
Autonomous and mobile manipulator robot for
hydroponic greenhouse picking tasks

Ingegneria dell’informazione, informatica e statistica

Master’s degree in Control Engineering

Candidate

Federico Rollo
ID number 1851121

Thesis Advisor

Prof. Giuseppe Oriolo

Co-Advisor

Dr. Nome Cognome

Academic Year 2018/2019

Thesis defended on 18 January 2020
in front of a Board of Examiners composed by:

Prof. Alessandro De Luca (chairman)
Prof. Roberto Belardi
Prof. Andrea Cristofaro
Prof. Paolo Di Giambernardino
Prof. Fabio Giulii Capponi
Prof. Giuseppe Oriolo
Prof. Leonardo Lanari

Autonomous and mobile manipulator robot for hydroponic greenhouse pick-
ing tasks
Master’s thesis. Sapienza – University of Rome

© 2021 Federico Rollo. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: January 2, 2021

Author’s email: rollo.f96@gmail.com

mailto:rollo.f96@gmail.com

Dedicated to
my family

and all the people
who believe in me

v

Contents

Sommario xi

1 Introduction 1
1.1 Work presentation . 3

2 Algorithm hierarchy and task specification 5
2.1 Process procedure . 6
2.2 process specifications . 7
2.3 Environment description . 9

3 Robot mobile platform 13
3.1 Carrier choice . 14

3.1.1 Car-like robot, Mecanum wheels robot or differential drive . . 15
3.2 Localization system . 22
3.3 Motion planning . 23

3.3.1 Path Planning: Generalized Voronoi diagram method 24
3.3.2 Trajectory generation: assign a time law at the path 28
3.3.3 Trajectory tracking: backstepping approach 28

3.4 Approaching movement . 29

4 Manipulator arm 33
4.1 Manipulator arm structure . 33

4.1.1 Forward kinematics . 34
4.1.2 Inverse kinematics . 37
4.1.3 Differential kinematics . 43

4.2 End-effector . 43
4.3 Vision system . 45

4.3.1 Camera specifications . 46
4.3.2 Flower identification . 49
4.3.3 Flower ripeness . 57

vi Contents

4.3.4 3D localization . 62
4.4 Motion planning and control . 68

4.4.1 Trajectory planning . 68
4.4.2 Kinematic control . 72

5 Real prototypes 73
5.1 Existing robots for picking tasks . 73
5.2 Prototype . 75

5.2.1 Mobile Platform . 75
5.2.2 Robotic arm . 77
5.2.3 Vision camera . 78
5.2.4 Others . 79

6 Simulation 81
6.1 Matlab . 81
6.2 Vrep . 84

6.2.1 Simulation Environment . 84
6.2.2 Robot assembling . 85
6.2.3 functionalities . 87

6.3 Simulation results . 88

7 Conclusions 91
7.1 future improvements . 91

A Euler Angles 93
A.1 ZYZ angles . 93

B K-mean algorithm 95
B.1 K-mean image segmentation algorithm 96

C Flower separation algorithm 99

Bibliography 101

vii

List of Figures

2.1 Hierarchical structure of the harvesting task 5
2.2 Structure of a generic hydroponic greenhouse. The organization is

similar to the old-fashion greenhouses. 10
2.3 Plantation example of an hydroponic greenhouses where each plant

has its own hydroponic vessel. 11

3.1 Car-like robot platform top view . 16
3.2 bicycle robot top view . 17
3.3 Differential drive robots top views 18
3.4 An example of Mecanum wheel for heavy tasks made by omni-robot

[61]. 19
3.5 Mecanum wheeled robot top view. 20
3.6 Different direction of the car can be obtained turning the Mecanum

wheels in different directions. [82] 20
3.7 top view of the greenhouse displacement 23
3.8 Motion Planning logic . 24
3.9 simple Voronoi diagram example with plant stopping points (red dots)

on the path . 26
3.10 manual creation of a path for the robot movements into the greenhouse 27
3.11 Approaching movement of the robot through the plant to accomplish

the picking task . 30

4.1 Anthropomorphic arm with a spherical wrist (6 DOF configuration) [68] 35
4.2 Anthropomorphic arm structure. The length of the last link has been

called d4 because this structure is related with the arm in Fig. 4.1 . 39
4.3 Spherical wrist structure . 42
4.4 Stylized end-effector for picking different kind of friuts composed by

a basket (in brown) and a linear saw (in grey) 44
4.5 Stylized end-effector for picking zucchini flowers composed by a gripper

(in brown) and a scissors (in grey) 45

viii List of Figures

4.6 Camera position with respect to the end-effector one 48
4.7 The right ripeness flower color. RGB value (255, 220, 0) 50
4.8 Minimal and maximal RGB colors for flower identification 51
4.9 Image of a zucchini plant with flowers 52
4.10 Zucchini image processing with clustering decomposition in three

different clusters . 53
4.11 Color noisy zucchini plant image . 54
4.12 Color noisy zucchini image processing with clustering decomposition

in three different clusters . 55
4.13 Color noisy zucchini image processing with clustering decomposition

in five different clusters . 56
4.14 Minimal and maximal RGB colors for flower ripeness 57
4.15 Original flower cluster extracted with the K-mean algorithm 58
4.16 Segmenteation of cluster in Fig. 4.15 59
4.17 Flower separation . 60
4.18 Flower separation . 61
4.19 Spherical coordinate of a Cartesian space vector 65
4.20 Highlighting of the flower stem to simplify the estimation of the stem

position and orientation . 67
4.21 Segmentation of the zucchini flower stem in Fig.4.20b 67
4.22 Trapezoidal behavior for a generic timing law 71
4.23 Block scheme for the joint kinematic control strategy 72

5.1 4WD Mecanum Wheel Mobile Robotic Platform produced by King
Kong Robot[60] . 76

5.2 Light duty Mecanum wheel mobile platform OMR10 presented by the
Omni Mechanical Technology company [14] 76

5.3 Mobile Robot MPO-500 produced by Neobotix[50] 77
5.4 Kinova 6 DOF Robotic arms . 78
5.5 Kinova RGB-D camera mounted on the end effector of the Gen3 robot 79

6.1 Representation of the environment used in the simulation 84
6.2 Flower 3D CAD model . 85
6.3 Mecanum Car Model . 85
6.4 Robotic Arm model . 86
6.5 Other accessories of the Robotic Arms 87

ix

List of Tables

4.1 DH parameter of the 6 DOF structure in Fig. 4.1 36
4.2 DH parameters for the anthropomorphic arm structure of Fig. 4.2 . 39

xi

Sommario

Un piccolo sommario in lingua italiana è stato introdotto nella tesi per facilitarne la
comprensione a chi ha poca domestichezza con l’inglese.
La seguente tesi è basata sullo sviluppo di una piattaforma mobile con sopra annesso
un braccio manipolatore che possa lavorare all’interno di un ambiente agricolo chiuso
ovvero una serra. Lo studio di fattibilità svolto prevede una parte progettuale e
una simulativa per validare la fattibilità e la buona riuscita degli algoritmi, delle
logiche e del progetto in generale. La tesi inizia con la presentazione della logica
dell’algoritmo utilizzato, vedi capitolo 2, per passare poi ad analizzare i vari aspetti
decisionali e tecnici delle strutture da utilizzare per la costruzione del robot, come
la piattaforma mobile, vedi capitolo 3, e il braccio manipolatore, vedi capitolo 4.
In questi capitoli diversi aspetti vengono tenuti in considerazione, partendo dalla
cinematica delle varie componenti, gli algoritmi di motion planning, arrivando fino
allo studio dell’organo terminale e il sistema di visione e gli algoritmi di machine
learning necessari per il compimento dei compiti assegnati.
Successivamente, la tesi continua con l’analisi delle diverse piattaforme esistenti sul
mercato e la presentazione di alcuni nuovi prototipi da poter sviluppare per queste
applicazioni, vedi capitolo 5 per poi finire con il capitolo 6 dove viene presentata
la simulazione svolta con le piattaforme Matlab & Simulink e Vrep. Il capitolo
conlcusivo, ovvero il capitolo 7, conclude il progetto traendone le conclusioni e
portando alla luce alcune possibili implementazioni future necessarie a migliorare la
resa e l’usabilità del robot.
Alla fine della tesi è stata aggiunta anche una appendice composta da tre capitoli dove
sono riportati alcuni concetti geometrici o algoritmi utilizzati durante il lavoro. in
particolar modo, nell’appendice A sono presentati gli angoli di Eulero, nell’appendice
B viene presentato l’algoritmo K-mean e una sua applicazione per il riconoscimento
dei fiori e nell’appendice C viene presentato l’algoritmo di classificazione e separazione
dei vari steli dei fiori all’interno di un immagine necessario per la loro identificazione
e localizzazione nello spazio.

1

Chapter 1

Introduction

The agriculture and, in general, food production are one of the most important and
ancient jobs for human beings. Every day,due to the population growth, the necessity
of producing food in large quantity and in a small time is increasing constantly. This
high rate of production results in more costs for the business owners, more labor
for the farmers and consequently more costs for the buyers. These costs cannot be
faced by most of the people because the population rising decreases the common
purchasing power. A good alternative to face this problem is to use some machines
to perform human hard labours. This kind of automation decreases that production
costs which would burden on the consumers preserving farmers health and resulting
in a more sustainable and less costly product.
In general, it is proved that a small number of autonomous robots can cover the
labour of a bigger number of workers, more or less three or four farmers for the
picking tasks,[76]. This is not only due to the task accomplishment speed but
even thanks to the robot ability to work constantly, needing only short rest times
(charging, cooling, repair and others) with respect to humans. Moreover, thanks to
the rise of the green energies these robots would be able to perform most of the task,
if not all, consuming clean energy and without polluting the environment. Indeed,
the most innovative producers, especially the hydroponic ones, are always associated
with some clean energy companies which provides energy and invest in these small
realities to enhance their growth. In this way, all the stakeholders of the agricultural
are, and probably all the human beings, should be able to produce and consume
good and fresh products at affordable prices.
There exist companies which already use autonomous robots for the entire growth
cycle of food. One of the most famous is the IronOx [24] startup which has built
a fully autonomous hydroponic greenhouse where the human labour is confined in
monitoring robot efficiency, maintenance and economical tasks. The heavy works
automation is one of the control engineers’ main objectives and, with this, the

2 1. Introduction

workers could be able to perform softer labors such as maintenance, monitoring and
others. These reasons demonstrate why there exists so much studies and researches
over this field. There are a huge number of papers, studies, applications, hypoth-
esis, books and projects, included this work, which cover lots of this task, from
seeding to picking, from monitoring to weeding, from transportation to packing. A
good treatment of the all this different tasks and their automation can be found in
[18][27][26][62]. All these studies aim to simplify and improve the presence of robot
in farming tasks, presenting different solutions and giving other references to explore
some specialized solutions.
Some of the most complete works, which can be compared with thesis, are presented
in section 5.1 while some picking robots projects can be found in [13][9][76][19][64].
These papers aim to create an autonomous and mobile robot able to pick different
fruits and store them in a collecting box. Other studies have been performed to
improve the overall task by designing the end-effectors [78], the navigation tech-
niques of the robot through greenhouses [31], some particular wheels suited for flat
floors [42], the mobile platforms to use in closed environment [71][73] and some
multipurpose robotic systems [69]. Lots of other works are not here reported due to
the huge quantity of them but they deserve to be cited also if in a generic way. These
studies can be found directly on web platforms such as IEEE [34], ResearchGate
[59] and others academic websites.
The most challenging fields in autonomous picking tasks is fruit recognition, lo-
calization and pose estimation. For these task lots of different solution have been
presented and most of them use machine learning techniques. Different useful fruit
recognition reviews have been presented during the years starting from [16] where
some visual servoing techniques are presented, [21] which relate some of the most
used vision system with agricultural tasks and [72][77] that address different 3D
localization and recognition methodologies for picking robots. Other good references
are [70][32] where different vision and perception techniques and their application
are presented and [10] which reports the most used machine learning methods. Also
in this field there exists different works which study single portions of vision systems
such as shape and object recognition [66][58][40], colours classification [45], pose
estimation of an object [41].
One essential role for visual tasks is covered by the Cameras, especially for the
environment 3D reconstruction. The cameras considered in this work are only
RGB-D cameras, see section 4.3.1, but also other kinds of cameras can be suited in
these tasks, e.g. stereo camera. The RGB-D cameras result very useful because they
allow a fast 3D object recognition and reconstruction [22][79][6], the pose estimation
and localization [80][29] and the measuring and classification of different kind of

1.1 Work presentation 3

fruits [57] in a short time. These cameras can be merged with some neural network
techniques, generally convolutional neural network for image recognition to provide
a fast and efficient solution for picking robots [30][44]. Moreover, the presence of
this camera on the robot could improve also the motions through the greenhouses
because camera based guidance techniques can be applied [56] improving both robot
localization and obstacle avoidance. Some application examples of these methods
can be found in [8][52][53].
Another important part for a good harvesting is the monitoring of the plants’ growth
and quality. These observations can be done in different ways but the most common
is using multiple robots which are connected between them with a communication
system. Some works on this topic are [62] where different monitoring techniques are
presented, [7] which use swarm robotics for monitoring tasks, [20] which combines
collaborative robotics with control theory to detect plant disease, [36] which use
a UAV monitoring for detecting plants water stress to control the irrigation, [65]
where is presented a robot able to supervise the plants growth.
Other minor, but not less important, works for these robots and for automation could
be the autonomous scattering of pesticides or fertilizers when the robot recognise
that they are needed [37][75][67], the autonomous right irrigation of the plants thanks
to underground sensors [17] or other techniques [63]. Also seeding tasks, which could
be a heavy work, can be automated using autonomous single seeding robots [49][35]
or a group of them [11] to accomplish the task. furthermore, some particular task for
seeding, such as seed selectors [33] can be implemented on each robot for the right
and best task performance. In [55] is proved that the use of seeding and planting
robot introduce also economic benefits as well as a human hard work decrease.
Regarding the technological methods and items used in this work different project
and papers are cited during the thesis; while for the robotic background a very good
reference is [68] where many robotic topics are covered.

1.1 Work presentation

The structure of this work has been divided to separate the different components
which compose the whole picking robot. In chapter 2 the algorithm for the picking
task is presented with a full explanation of the process procedure. Moreover, there is
an environment description introduced both for completeness and to clarify some of
the choices done during the work. Chapter 3 present different kinds of mobile robots
with their kinematic models and the motion planning techniques used to move the
robot inside the greenhouse. In chapter 4 the manipulator arm is presented. This
chapter is the largest because the fruit picking is a delicate task and comprehends

4 1. Introduction

the end-effector design, see section 4.2, the vision system, see section 4.3, and the
motion planning of the arm, see section 4.4. In chapter 5 different existing solution
for picking robot and some new prototypes for this robot are presented. Chapter
6 reports the simulation used to evaluate the work feasibility of this thesis and its
results. Finally, in chapter 7 the project conclusions are presented along with some of
the most important future improvements. At the end of this work have been added
three appendix chapters which are useful for the deep comprehension of the thesis.
In particular, in appendix A there is an introduction to Euler angles, in appendix B
a k-mean algorithm for color clustering has been presented and in appendix C there
is a cluster separation algorithm for the recognition of the single flowers and stems.

5

Chapter 2

Algorithm hierarchy and task
specification

Figure 2.1. Hierarchical structure of the harvesting task

The main task of this robot is to pick some objects, in this case zucchini flowers
or fruits, and then place them into the box over the carrier. But, to accomplish
this task, different intermediate tasks are needed because the robot works in a large
environment with the presence of multiple obstacles.
First of all, in the environment there is an home station, namely the charging station
or docking station, that is the point on the map in which the robot rests the most

6 2. Algorithm hierarchy and task specification

of the time due to its recharging and the disuse, e.g. in Fig. 3.7 the robot is placed
exactly in its docking station. This charging station is the starting and ending point
of the robot for the harvesting task. Indeed, when the robot is initialized, it is in the
docking station and when the harvest is complete it returns there, where it remains
at rest after that the crop will be taken and brought to the packaging.
To simplify the comprehension of the robot picking task, a hierarchical flow chart
has been reported in Fig. 2.1. In this way, the whole logical procedure followed by
the robot is compressed in a single figure.

2.1 Process procedure

In block (1) the system is initialized, i.e. the robot is turned on and the whole system
is set to start. block (2) concerns the movement of the robot in the greenhouse;
despite it is a single block, can be seen in section 3.3 that it is not a trivial task.
On the greenhouse map stored in the robot memory there are the plants points in
which the robot must stop to take some plant pictures with the camera. Indeed,
in block (3) there is the pointing of the camera toward the plant. The camera
is positioned over the wrist of the robot, see section 4.3, in this way it is able to
sense the zucchini flowers on the plant from different positions. The idea is to
move the manipulator arm in different poses to have different plants points of view
to maximize the possibility of finding a ready flower. In this work the different
perspective points are not considered because the simplicity has been preferred
despite of the completeness. For more information above the vision system have
a look at section 4.3. Once that the camera mounted on the arm is pointing the
selected plant, the depth cam takes an image of it, block (4), and then, with the
image processing, the robot searches for some zucchini flower on the plant using the
machine learning technique reported in appendix B, block(5). In block (6) there
is an if-then logic: if at least one flower has been found, then continue with the
harvesting task otherwise search on other plants, block (19). Continuing with the
crop tasks, after that the robots has approached the plant, block (8), see section
3.4, in block (7) one of the sensed flowers is taken into account and if it is mature
i.e. if it is ready to be picked, then the picking process starts, otherwise the robot
considers if some other sensed flowers are ready or not, block (18). In some cases,
the approaching movement can be neglected depending on the chosen trajectory for
the robot or, most important, depending on the distance between the robot and the
plant. In fact, if the manipulator arm is able to pick the flower directly remaining
over its main path, it could pick the flower directly from it. Anyway, this is not
recommended because a trajectory of this kind could damage both the robot and

2.2 process specifications 7

the environment due to its closeness to the plants.
In block (9), the vision camera is pointed in direction of the plant and it is ready to
sense the 3D structure of the plant to find the position and orientation of the flower
with respect to the end-effector, see section 4.3.4. With this information, in block
(10), the path for the manipulator is planned to avoid the contact of the arm with
the plant and to position the end-effector close to the flower, near the final picking
position, block (11). Once the end-effector is close to the flower, the camera takes
other images with the depth cam, block (12), the robot processes the images, block
(13), and with the new flower pose information the end-effector is moved exactly
in the cutting point with the desired orientation for the picking task, block (14).
Finally, to complete the picking task for the considered flower, the gripper grabs the
flower stem and the scissors cuts it from the plant, block (15). Once the flower has
been separated from the plant, the manipulator arm moves to the collecting box,
releases the flower, block (16), and, finally, it returns to its home position, block
(17). Now, if there are other flowers on the plant this picking process restarts with
the new flower, otherwise the robot looks for another plant to be checked on its row,
block (19). If there are plants on the current row which has not been considered,
then the robot restarts the procedure from block (3) with a new plant; otherwise,
it passes to block (20) where the robot checks if the picking point list has been
completed or if there are other points on its path. If there are other picking points
on the list, the robot returns on its trajectory and moves on the next crop station,
block (2), to restart the harvesting process from block (3). Otherwise, if there are
no more plant to be checked, the robot returns to its docking station following the
prefixed trajectory, block (21), and completes the whole process, block (22).
In the charging station there will be a people or and automated machine which
replaces the flower-full boxes with some empty ones and brings the picked flowers to
the packaging machine where they will be divided and properly packed.

2.2 process specifications

Once that the algorithm hierarchy has been decided there are also other characteris-
tics that must be decided depending on different factors such as the plants nature
and others.
The zucchini flowers are characterized by a fast maturity process, indeed, when
they are ready, it remains open for at most 36 hours. The first impulsive choice
could be picking the flower whenever it is ready, but this could weigh on the cost of
production because the robot should do different turns during the day but, most
important, in this way the flower fertilization process is completely nullified. In fact,

8 2. Algorithm hierarchy and task specification

the zucchini flowers of interest are the male fertilization part of this process and, by
cutting them when they are just blossomed, the female part, i.e. the zucchini fruit,
cannot be fertilized provoking the fruit decomposition and slowing down the plant
grown resulting in a smaller crop quantity during the season.
Considering that in general most of the flowers blossom in the morning or at most in
the early evening, if the flowers are picked during the late afternoon or, even better,
during the night, this problem is quite annulled. Moreover, the flowers during the
night are fresher because they recover the dry out caused by the high temperature
of the day.
The only problem is that the recognition of the flower is performed through an
RGB camera sensor which needs a minimal brightness for the identification and
localization of the flowers. To overcome this problem two possible choices can be
considered for the picking scheduling:

1. take a monitoring turn during the day and pick the flowers in the late afternoon
before the sunset

2. attach a flash to the camera

The first option is disadvantageous under many points. The electricity cost of the
monitoring turn is an addition to the main picking turn and, depending on the size
of the greenhouse, could also create problems for the charging scheduling of the
robot which after the monitoring should be able to recharge the battery power to
perform the picking turn in the evening. The flowers do not have time to recover
the dry out and this will affect the product freshness. Moreover, in some cases could
happen that the leaves of the plant shade the flowers and in low light condition the
recognition task becomes quite impossible needing the flash in any case.
Instead, with the second option, i.e. the addition of a flash, the camera works always
in an almost ideal brightness condition, being able to recognize the flowers also in
low or absent light conditions. It is true that the power consumption of the flash
is not negligible but, considering that in this case the monitoring turn is no more
needed, the costs are almost equal. Moreover, as already explained, if the flower is
cut during the night, it is fresher resulting in a high quality product which can be
packed before the sunrise and ready for the early morning shipping.
Those little attentions could seem worthless under an implementation point of view,
but its consideration is necessary to enter into the market and be competitive.
Furthermore, some statistics, for example the ones in [76], highlight the savings
gained due to the use of machines instead of humans under an economic point of
view. Other improvements could be implemented on this project to optimize and
maximize the production, the quality and the earnings, but there are too many

2.3 Environment description 9

details to be considered and this could lead to a complete but confused work and
the aim of this project is the modeling and simulation of an autonomous picking
mobile robot. Some of these aspects are slightly introduced in section 7.1.

2.3 Environment description

The workspace of interest is characterized by an hydroponic greenhouse structure.
The main peculiarity of these kinds of greenhouses is that the plants do not grow
inside a common ground bed, but they are collocated inside a little tub with coir
or directly with water. The solution chosen in this work is the first one, therefore
the plants are put inside some pots with coir. using one of this two methods, the
greenhouse not only can be rearranged in a very simple fashion, but it is also more
resistant against diseases. There exist lots of advantages in using a hydroponic
greenhouse with respect to a normal one. First of all, the water use decreases a
lot because it is used only the one that the plant needs and it won’t be drained
by the terrain or evaporated by the heat of the greenhouse. Another advantage
is the use of a smaller space where more plants can fit in. It is not uncommon to
see a vertical plantation where there are two, three or more shelves used to place
different plants. This is possible because a hydroponic greenhouse is composed by an
artificial illumination which makes possible the plants photosynthesis, an automatic
air conditioning which control temperature and humidity, an automatic sprinkler
system for the irrigation and a controller which regulates the quantity of nutrients
inside the water. These characteristics creates a suitable ambient for the grown of
different plants and allows to obtain more food with less resources.
Anyway, this system has also some contraries; all these automatic controllers,
the artificial illumination and the robot, that is the subject of this thesis, are
current consuming objects and these costs are not negligible because they burden
on the production costs and, hence, the product price. However, in the modern
era the production of clean energy and the possibility of building greenhouses
close to photovoltaic plants allows a smaller cost for the current production and
transportation and consequently for the current cost, not to mention the advantages
for the pollution. Wind farms and hydroelectric power can also be used to supply
the greenhouses with clean energy.
Anyway, despite all these differences between a modern hydroponic greenhouse and
an old-style greenhouse, their structure is quite similar. In general, there are two
kind of hydroponic greenhouses, the ones completely automated, i.e. enclosed in
a cemented environment such as warehouse and the ones which are an adaptation
of an old greenhouse terrain to an hydroponic space. The second one is the choice

10 2. Algorithm hierarchy and task specification

selected because it is the most common due to the fact that if there is not a large
amount of money to invest, then it is more suitable to rearrange, in terms of time
and costs, a predisposed terrain to a hydroponic fashion.
Indeed, that approach is the simplest one and can be seen in Fig. 2.2 where the light
blue beds represents the tubs where the plants will be collocated and the brown is
the normal soil. the differences with the normal greenhouses are that the plants are
no more planted in the soil but in tubs with water or coir. Dx and Dy represents
respectively the distance between the bed along x and y axis and it has to be decided
depending on different details.

Figure 2.2. Structure of a generic hydroponic greenhouse. The organization is similar to
the old-fashion greenhouses.

Anyway, once that the tubs are positioned the hydroponic greenhouse can be
considered as a normal one. Obviously, before the positioning of the tubs, the soil
should be flattened and leveled.
Another important characteristic, especially for this work, is that some rigid plat-
forms will be positioned on the soil to uniform the terrain consistency and also to
provide a catwalk to the people and to the robot, see section 3.1.
The last difference to consider is the altitude of the plants with respect to the floor.
This distance depends on the positioning of the tubs on the soil and could affect the
robot choice. If the tubs are only placed upon the terrain, the plant height would
probably be different with respect to dig some holes and position the tubs at ground
levels. This difference in altitude could seem a characteristic of little consequence
but, instead, it is one of the most important because the picking area, i.e. where
the flowers are present, should be inside the workspace of the robot manipulator

2.3 Environment description 11

arm or even better inside its dexterous space. If the robot can reach at most 1 m in
altitude, the tubs are 1 m tall and the zucchini plants are grown in height (some
zucchini plants can reach and exceed 1 m of height/length), then the robot could be
not able to perform its tasks and another robot structure should be chosen. Instead,
if the tubs are at ground level the plants can be grown in height or can be left on
the soil because the robot will be able to reach them without any problem. In this
work, a middle way has been considered: the tubs are tall almost 30 cm and the
plants are grown in height. in this way the zucchini plants can reach at most 1.2 m
of height and probably this is not the case of the zucchini plant species chosen for a
greenhouse environment.

Figure 2.3. Plantation example of an hydroponic greenhouses where each plant has its
own hydroponic vessel.

Growing the plant in height is a common technique used for different vegetables
such as tomatoes, cucumber and others, especially in greenhouses. In general, some
reeds are stuck in the soil and the plants is gradually attached to the rod during
their growth. Another elegant solution, broadly used in greenhouses, is to tie some
little strings of rope to the roof and wrap it around the plants. This second solution
brings lots of advantages:

• more plants can be planted in a smaller place

• the robot view is clearer resulting in a more accurate sensing

• the plants are less exposed to diseases or rottenness because they are better
ventilated

12 2. Algorithm hierarchy and task specification

• the plants are more impact-resistant because if the robot collides with them,
the plants will cushion the impact thanks to the wire softness.

• differently from the reed’s solution, the plants is not suffocated by the wires
which connect the plant to the rods.

In Fig.2.3 a simple representation of the plantings structure is presented. The plants
are positioned inside some tubs or vessels containing some coir terrain and are
positioned in row. The plants are grown in height and the maximal height of the
plant is represented by h which could range from 30cm to 100cm. The hydroponic
vessels are represented in light blue to distinguish them from some normal plant
beds or vessels.

13

Chapter 3

Robot mobile platform

The choice of a good mobile platform for the harvesting tasks is not straightforward.
Different carriers have been invented to perform many tasks, but the construction
requirement and the implementation choices always changes on the base of the
information of the environment, the fruit to crop, the typology of the field, the
space between the plants and others. Generally, these platforms must have the
space for handling not only the manipulator arm, but also to storage the cropped
fruits, the battery which supply the electrical machines, the cameras used to detect
a 3D approximation of the environment and the controllers needed to accomplish
the task and synchronize the machines. In our case, the greenhouse environment is
characterized by a fixed structure where it is difficult to encounter obstacles and
where the field is almost smooth and flat. Thanks to the fixed structure of this
environment the carrier wheels tires can be structurally simpler with respect to the
ones used for open fields autonomous systems where the rugged terrain requires
wheels with a good grip and a complex suspension system behind. These advantages
allow to decrease the carrier costs and, therefore, use this savings for the manipulator,
the end-effector or a specialized vision system for crop tasks.
As has been presented in the introduction, Chapter 1, the autonomous robot needs
to move in a structured greenhouse where the environment map is completely known.
Different projects regarding greenhouses crop tasks uses carriers on rails to simplify
the controller behind the movements, to limit the robot freedom and to decrease the
possible damage to the plants or the environment. Anyway, this limitation could
be costly for big areas and the low changeability of these rails fixed structure could
reflect into a problem when the greenhouses internal structure must be changed for
any reason.
On the other hand, a wheeled robot is more suited for this task because the terrain
smoothness, the knowledge of the environment map and the plants position allow to
find simple paths which drive the carrier though the plant beds without damaging

14 3. Robot mobile platform

anything. Another advantage for these free moving robots is the possibility of
detecting an obstacle, e.g. a dropped plants onto the path, and overcome the
problem by circling around them, founding another path or, whether there are no
other solutions, reporting the problem to the central unit.
An important decision during the carrier choice could be the necessity of a lifting
platform beneath the manipulator and the storage area. This could be needed when
the plants grow in a vertical fashion which is a common situation for greenhouses
where the space is generally exploited for its best. The platform should be able to
maintain and lift the weight of the object positioned above and more important to
sustain the manipulator dynamic forces. The manipulator cannot be too cumbersome
otherwise the picking task becomes difficult and, in some case, also unfeasible
without damaging the environment. Moreover, the plants considered in this work
are zucchini plants which belonging from the ground plants family are well known
for their encumbrance. But, the robot has to pick only the zucchini flowers that
has a really low weight and so the manipulator could be equally light-weight and
with an ergonomic profile as can be seen later in chapter 4. This fact introduces
also other advantages in the choice of the carrier because the picking task and the
movement of the manipulator introduce only small disturbances on the carrier field
stability which, when it is placed in front of the plant, will remains stable on its
position without overturning itself. Anyway, as it is possible to see in section 5.2
and as it was slightly discussed in section 2.3, there will not be any reason to add
the lifting platform for our task.
Now that the main problems encountered for the choice of the carrier have been
expressed, the decision for the carrier and the motion algorithm can be presented.

3.1 Carrier choice

The first choice to do is what kind of platform is preferred for this task. The answer
is not simple, and it will affect the choice of the robot model. There are different
kind of vehicles used for these tasks. dismissing the railed robots used in most of the
picking task, the most famous models are the differential-drive robot and the car-like
robot. The first one is characterized by two actuated wheels and generally one free
carrier wheel introduced to improve the stability of the robot. This structure can
turn around its center and it is able to perform all movements needed for our task,
but this model has a big lack in stability. It is true that no huge stability issues are
needed for our task but there could be always some drawbacks during the movement
and the carrier should be able to overcome them as best as possible. An interesting
differential-drive configuration has been presented in [31] where the wheels has been

3.1 Carrier choice 15

replaced by two tank tracks which increase the stability of the carrier on rough
terrains. However, this is not suited for our case.
The second structure, the car-like robot, is characterized by four wheels which can
have different actuation disposition. The possibility of the front wheel to steer allows
to perform narrow movement around the plants’ rows without needing too much
space. Moreover, the disposition of the wheels enables the carrier to have a good
stability.
There exists also another configuration very similar to the car-like robot that is
characterized by the presence of four Mecanum wheels [42] rather than the normal one
and the non-steering front wheels. These wheels enable the robot to instantaneously
move along its transversal direction, that is an impossible action for the car-like
robot which has a non-holonomic constraint exactly in that direction. There exist
some greenhouses which already use this kind of wheels for their robots. one of the
most famous is the Iron Ox start-up [24] which has a fully automatized hydroponic
greenhouse where some mobile platforms are equipped with these wheels. The
hydroponic greenhouses do not need the presence of soil and they are generally
characterized by a well-structured floor that allows different free movement on a
smooth surface. Indeed, depending on the floor characteristics the farmers could
prefer to use a four mecanum wheel robot for its omni-directionality or a simple car-
like robot for its good stability and traction on rough terrains. A small comparison
between these three mobile platform systems will be afforded in the next section
3.1.1

3.1.1 Car-like robot, Mecanum wheels robot or differential drive

In this subsection the models of three mobile platforms will be presented with a
slight treatment of the pros and contraries of each system.

Car-like model

The first structure considered is the car-like platform. This robot is composed by
four wheels positioned in a rectangular shape, see Fig. 3.1.

16 3. Robot mobile platform

Figure 3.1. Car-like robot platform top view

The four wheels can be arranged with different actuation configurations: one
motor for each wheel, one motor for the two rear wheels and one for the front wheels
and finally use one motor to drive either the two rear wheels or the front wheels.
In general, the last configuration is the preferred one because by using a single
motor, the occupied space and the overall weight are reduced allowing to build
a more compact and agile robot even if these choices depend on different factors.
Despite of this, the strength of this robot is the possibility to steer due to the front
steering wheels. Such as a real car, the robot can orientate the front wheels in
the desired direction to perform a clean angular movement reducing the drifting
behaviors which are one of the most common disturbances affecting these systems.
The drifting behaviors generally introduce an error that, once integrated in time,
can grow till the infinity resulting in a wrong odometric localization. To reduce
these behaviors, different mechanical and software improvements can be introduced
in this structure. For the mechanical part, a particular machinery, called Ackermann
steering mechanism, is introduced on the axle which connect the front wheels, the
steering one. This machinery autonomously controls the direction of the wheels
depending on the curve that the machine has to afford. If the steering wheels are
oriented with the same angle, some drifting behavior naturally arise on the system
and they will cause a wrong curve following. Instead, if the wheels can be steered
with a different angle then the car is able to perfectly follow some generally circular
path reducing the drifting error until almost neglecting him. One of the strong points
of this mechanism is its completely autonomy, in fact, once it is positioned into our
car-like robot it works independently to the task movements. This peculiarity allows
to maintain the original model of the car-like robot without considering the presence
of this machinery and more important the front wheels can be considered parallel

3.1 Carrier choice 17

into our model and this is a very strong assumption which simplifies a lot the work.
The second way to reduce these errors is implemented directly into the software
systems which thanks to the use of some sensors can improve the localization system.
This is necessary because the drifting behavior could arise not only because of the
structure of the carrier, but they can be caused also by other factors. If the wheels
are not perfectly in contact with the floor, then their traction is a little bit noisy
which means that the wheels could spin freely in some instants and this worsen the
error integration in time. For these reasons, a good localization system is always
needed for these tasks but this argument has been treated in section 3.2.
The kinematic model of the car-like robot can be approximated with a simple bicycle
model which is characterized by four states and two input. The states are the x and
y coordinates of the Cartesian plane, the θ angle, known as heading angle, which
represents the angle between the bicycle and the x Cartesian axis and finally φ,
known as steering angle, which is the angle between the sagittal plane of the front
wheel with its rest position i.e. when the front wheel is aligned with the bicycle frame.
The two input are the linear velocity v and the angular velocity ω of the whole
structure (see the comparison between Fig. 3.1 and Fig. 3.2). This configuration
can be used for our car-like robot because the front wheels are parallel and then
they can be coupled into a single wheel positioned at the center of the axle and the
same holds for the rear wheels which are equally parallel. these strong assumptions
allow to use the bicycle model as the approximation of the car-like robot providing
a simpler control and application of the different algorithms.

Figure 3.2. bicycle robot top view

for sake of simplicity, only the kinematic model of the rear wheel drive robot is

18 3. Robot mobile platform

presented in 3.1 but the front wheel drive can be obtained by multiplying a cos(φ)
to the linear speed v: 

ẋ

ẏ

θ̇

φ̇

 =


cos θ 0
sin θ 0
tan φ

l 0
0 1


[
v

ω

]
(3.1)

Differential Drive robot

(a) differential drive robot with
the support omni-directional

wheel (dotted circle)

(b) differential drive robot with
crawlers

Figure 3.3. Differential drive robots top views

As introduced, the differential drive robot can be composed by two actuated wheels
and an omni-directional wheel necessary for the stability of the robot (Fig. 3.3a) or
it can have two actuated crawlers (Fig. 3.3b). These configurations are characterized
by a good mobility because the robot can turn around its center and, therefore, it
can perform narrow movements without the necessity of performing maneuvers. The
stability of the second differential drive configuration, i.e. the one with the crawlers,
improves the performances of the robot because the increasing in stability allows
different movements on rough terrain and reduces consistently the possibility of
losing grip with the soil. Due to its simplicity in design, implementation and control,
this configuration is widely used in many tasks that require motion. There exists
also some experimental projects for agricultural tasks which use this configuration,
in particular the one presented in Fig. 3.3b.

3.1 Carrier choice 19


ẋ

ẏ

θ̇

 =


cos θ 0
sin θ 0

0 1


[
v

ω

]
(3.2)

[
v

ω

]
=
[
r
2(ωr + ωl)
r
d(ωr − ωl)

]
(3.3)

Where ωr, ωl represent respectively the right and left angular speed of the wheels, r
is the radius of the wheels and d the distance between them.
The kinematic model of the differential drive robot can be considered as a special
configuration of the Unicycle one, indeed the kinematic model can be derived directly
from it. By analyzing the Kinematics of the unicycle in 3.2 can be stated that thanks
to the input transformation reported in 3.3 the differential drive kinematic model
can be derived.

Four Mecanum wheels robot

let’s firstly introduce the particular structure of the Mecanum wheels. The Mecanum
wheel also known as Ilon wheel was invented in 1972 by the Swedish engineer Bengt
Erland Ilon.

Figure 3.4. An example of Mecanum wheel for heavy tasks made by omni-robot [61].

They are essentially tireless wheels, composed by a sequence of rollers connected
to the rim of the wheel in such a way that each roller have an angle of 45° with

20 3. Robot mobile platform

respect to the wheel sagittal plane and also with respect to the axle line, see Fig.
3.4.
Each Mecanum wheel is independent and its rotation generates a propelling force per-
pendicular to the roller axle which can be decomposed into longitudinal e transversal
component with respect to the vehicle [82].

Figure 3.5. Mecanum wheeled robot top view.

This kind of robot is always a four-wheel robot, but the choice of the wheels
allows to have some simplifications on the structure. First of all, the front wheels
do not steer anymore, the steering angle and angular velocity can be achieved by
injecting a different rotation velocity at each wheel, see Fig. 3.6.

Figure 3.6. Different direction of the car can be obtained turning the Mecanum wheels in
different directions. [82]

Obviously here the Ackermann steering machinery is no more needed because
the front wheels orientation is fixed with respect to the robot frame. The actuation

3.1 Carrier choice 21

configuration is unique: each wheel needs exactly one motor because the four wheels
must be controlled separately to perform the required movements. This seems to
be a disadvantage in space, weight and battery terms but the possibility of having
an omni-directional robot with good stability performances is a very strong pro.
This robot does not have any non-holonomic or holonomic constraint and could
move instantaneously in each direction. This characteristic is important when one
must perform tasks in small environments or when the robot should pass through
narrow passages because allows to cover each velocity direction without precluding
a non-conventional shifting. Anyway, the biggest contrary is the floor smoothness
because the ground should be well structured otherwise on a rough terrain the wheels
would have some drifting and traction problems.
The kinematic model of this platform will be now introduced. In this work, as it
is clear from the previous two platforms, for kinematic models of a mobile robot is
intended the connection between the angular velocity of the wheels and the linear
and angular speed of the whole machine and not the connection between joint space
and Cartesian space positions as it is used for the manipulator robots.
This robot does not have front steering wheels and consequently the steering angle
state is no more needed. The states of this system are only three: the x and
y coordinates and the θ headling angle like the differential-drive robot. Instead,
regarding the inputs, now we have four wheels actuated separately by four motor
and each angular velocity of each motor is now considered as one single input i.e.
four input are present, one for each wheel angular velocity. The forward kinematic
model [71] is:


ẋ

ẏ

θ̇

 = r

4


1 1 1 1
−1 1 1 −1

− 1
(dx+dy)

1
(dx+dy) − 1

(dx+dy)
1

(dx+dy)



ωFL

ωFR

ωRL

ωRR

 (3.4)

where FL, FR, RL and RR stands for Front-Left, Front-Right, Rear-left and Rear-
Right to indicate to what wheel they are associated, r is the wheels radius while dx
and dy are respectively the distance between the wheels on the x axis and on the y
one.
Instead, the inverse kinematic model [71] [48] is:

ωFL

ωFR

ωRL

ωRR

 = 1
r


1 −1 −(dx + dy)
1 1 (dx + dy)
1 1 −(dx + dy)
1 −1 (dx + dy)



ẋ

ẏ

θ̇

 (3.5)

22 3. Robot mobile platform

3.2 Localization system

The robot localization inside an environment is one of the most important tasks. If
the autonomous mobile robot does not know its position or pose, then it is unable
to accomplish most of the possible tasks. In our case, the map of the environment is
already known from the robot because the general structure of the greenhouse is
fixed and does not change until the next transplantation or some areas reallocation
to introduce different plants. In this way, the map can be considered entirely fixed
and known, reducing in this way the possibility to encounter unknown obstacles or
blocked passages.
The robot localization can be performed in different ways, the most common are:

• the odometric localization

• the Kalman Filter localization

The first method is characterized by using proprioceptive sensors to obtain, at each
step, an integration of the kinematic model of the system that is used to compute
the next probable robot pose. This method is widely used and it is integrated also in
other localization techniques because it is the simplest and allows to obtain a good
approximation of the robot position at the next integration step. The problems
arise when the model of the system is highly uncertain and/or it is affected by some
disturbances or noises which are not modeled in it. These errors could increase over
time due to the open loop integration performed at each step, and they could follow
a divergent and unstable behavior for the localization system and, therefore, in the
whole system.
The second method uses also some exteroceptive sensors and the Kalman Filter to
recover the errors of the odometric localization. There exists different localization
system based on Kalman Filter techniques, e.g. the landmark-based method, but
one of the most know and used is the SLAM algorithm or Simultaneous Localization
and Map-building method. With this technique the robot can build iteratively a
map of the environment and automatically detects its position into that map. Also,
in this case, there exists different configurations and implementations of the SLAM
algorithm depending on the task, the environment and the robot considered.
In this work the map is already well known and the localization system is assumed
to be already present on the mobile platform. Anyway, it is advisable to implement
a Kalman Filter localization system to recover some integration errors and for an
online obstacle avoidance i.e. to detect and avoid obstacles which are not considered
into the map. In fact, the most famous robots available on the market are all
implemented with a SLAM method or some Kalman Filter based techniques for the
obstacle avoidance and the right robot localization into the environment. Other

3.3 Motion planning 23

solution there could be considered, e.g. the Particle Filter which, thanks to the
sensing of the environment, can improve the localization of the robot recognizing
the position of it in the map, using an iterative sensing of the environment and
comparing it with the known map.
despite of these, the most famous mobile robot companies which sell autonomous
mobile robots already implement a localization system on the robot and most of
them provide auto-mapping techniques which allows the users a simpler setting
without the needs to introduce any map into the carrier memory. For our purpose
and in general, is always better to have an already drawn environment mapping, to
provide to the robot a strong initial base for the localization system.

3.3 Motion planning

The motion planning of the robot is another delicate task of this work. The choice of
the path and its following should be perfectly selected to avoid obstacles and provide
the best initial picking position for the manipulator. Moreover, the camera mounted
over the carrier should be able to recognize as best as possible the surrounding
environment both for monitoring and for recognition. The environment conformation
is simple and is composed by parallel axils as can be seen in Fig. 3.7.

Figure 3.7. top view of the greenhouse displacement

Motion planning tasks are composed by three main points:

• Path planning: an obstacle-free path is found in the map to go from the
starting point to the ending one

• Trajectory generation: a time trajectory must be created to assign a timing
low to the spatial path

• Trajectory tracking: the real controller which assures the robot trajectory
following without errors

24 3. Robot mobile platform

In Fig.3.8 can be seen a logic scheme for these three motion planning passages.

Figure 3.8. Motion Planning logic

Depending on the task and the movement to perform, a Voronoi diagram tech-
nique [31] can be used to find the path that the carrier must follow through the plant
rows. This is possible because the map is well structured and there aren’t particular
motions that the robot has to achieve. This algorithm should be used preferably if
the distance from the plant rows allows the robot to reach the plants from the center
of the path because, in this way, it would be able to pick left and right zucchini
flowers remaining on the Voronoi main path. Anyway, this is not strictly needed
because an approaching movement can be implemented to overcome the distance
between the manipulator and the plants and to maintain a good picking orientation
between them. Other map-based techniques have been initially considered, e.g. the
PRM [12] or RRT [39] algorithms, but in this case a simpler algorithm is preferred
because the task and the map of the environment are well known and the exploration
of the environment is not a necessary task. The final choice for this project has been
to use the Voronoi diagram algorithm and in next section 3.3.1 the reasons will be
explained.

3.3.1 Path Planning: Generalized Voronoi diagram method

The generalized Voronoi diagram method is a retraction path planning technique
[68]. The idea is to construct a roadmap R, subset of the free configuration space
Cfree, which can be used to connect each starting point qs with each goal point qg on
the map. In this way, by connecting the starting and ending point to the roadmap, it
is possible to find with an optimization method, the admissible paths which connects
two general points of Cfree. Thanks to the structure of the greenhouse environment
some simplifying assumption can be done:

3.3 Motion planning 25

• the free configuration space is represented by a closed portion of a R2 space

• the free configuration space and consequently also the obstacle space are
polygonal spaces

These assumptions allow to express the algorithm in a really simple way. First of
all, let’s express the clearance γ(q) as

γ(q) = min
s∈δCfree

‖q − s‖ (3.6)

where δCfree is the boundary set of the free configuration space which divides it from
the obstacle configuration space. Moreover, define the set N(q) which represents the
point s belonging from Cfree which are the nearest to configuration q:

N(q) = {s ∈ Cfrees.t. ‖q − s‖ = γ(q)} (3.7)

In this way, the generalized Voronoi diagram can be realized by simply collecting all
the points of the map in which the neighbor set N(q) has a cardinality bigger than
one i.e. the points which are equidistant at least from two points belonging from
the obstacle configuration space. Now, a set V (Cfree), which represents the Voronoi
diagram i.e. the roadmap previously introduced, is found and it can be used for
the path planning between two general points. This set has the characteristic of
maximizing the clearance between the robot and the obstacles in the environment,
providing a safety path which minimize the collision possibility. Once that the
roadmap has been built, the starting and ending point qs and qg has to be retracted
to the roadmap. This can be done by simply taking ∇γ(q) which is always directed
in direction of the roadmap. By continuing in the direction of the steepest ascent
direction ∇γ(q) and assuming that the configuration q is not isolated from the free
configuration space, the roadmap V (Cfree) will be encountered and intersected in
the point r(q) which represent the connection point between the configuration point
q and the Voronoi diagram.
It is important to specify that, when q ∈ V (Cfree) then r(q) = q otherwise some
problems could arise with the connection of q to the roadmap. Finally, after the
connection of qs and qg to the diagram, the whole path connecting them must be
found. If the graph representing the roadmap is completely connected, then this
path always exists. There are different ways for finding this path, but one of the
most used is the application of the A* algorithm because it provides the path with
minimum length in a small computational time. It is necessary to assign to each arc
of the graph a weight representing its length and then the path is founded iteratively
by the algorithm.

26 3. Robot mobile platform

Figure 3.9. simple Voronoi diagram example with plant stopping points (red dots) on the
path

Using this method, the distance from each plant bed is optimized and the robot
can pick left and right zucchini flowers passing between the two plant beds and
stopping in front of each plant; in the case that the robot is not capable of picking
robot directly on the main path, the approaching movements presented in section
3.4 must be applied to move the carrier nearer to the plant. In practice each plant
has its own configuration point on the map which can be reached directly with a
path built with the Voronoi algorithm and then, after that the vision system has
recognized the flowers, the approaching movement starts to bring the manipulator
arm near to the plant to complete its task. This action simplifies the implementation
of the motion planning algorithm and always achieves a good performance because
the movements performed are really simple and they maximize the robot obstacle
avoidance. In Fig. 3.9 a simple example of this path planning technique is presented:
the orange points represents the zucchini plants inside their green beds, the blue line
represent the Voronoi path and the red points represent the arrivals points for each
plant. Obviously, this approach is possible only because an omni-directional carrier
has been chosen; in this way the movements are not constrained by the structure of
the robot and they are free to be realized in the most appropriated way.

3.3 Motion planning 27

Figure 3.10. manual creation of a path for the robot movements into the greenhouse

This planning technique is not the optimal solution for this task because it
does not minimize the distance traveled by the robot on the contrary it increases
consistently the path length. This path length increasing burdens on the costs in
terms of time and money but maximize the safety of the robot and the environment.
This methods is suited for farmers which are not able to program or to impose a
pre-stablished path to the robot but another simpler and elegant solution could be
the manual construction of the path in a (x(s), y(s)) form in order to simplify not
only the robot computations but also to fit the path at the particular form of each
greenhouse, see Fig. 3.10. This manual method has been used for the simulation,
see section ??, but the approaching movement presented in section 3.4 is needed
anyway to enlarge the visual area of the flower recognition system to increase the
flower-founding possibility.
However, if the robotic arm can reach the plant remaining on the Voronoi diagram
path then the first solution should be considered. Since the hydroponic greenhouse
structure can be modeled in different ways during the organization planning, the
farmer can choose the perfect distance between the plant beds, in such a way that
the robot is free to move inside the beds and is able to crop left and right zucchini
plants. This last choice would be the best one but depends on the structure decided
during the greenhouse organization, indeed with some cooperation between farmers
and engineers the robot can fit perfectly in the greenhouse and the spaces could be
optimized increasing also the productivity.

28 3. Robot mobile platform

3.3.2 Trajectory generation: assign a time law at the path

Finally, once the path has been found, a timing law must be assigned to it to build
a time trajectory which will be tracked by the robot. In this case, except for the
start and the stop of the robot, there is no need of acceleration or deceleration, in
fact, depending on the cruise speed chosen for the robot, the trajectory must be
rearranged. For example, if the robot speed is chosen equal to 0.5 m/s then the
robot takes two seconds to move for one meter. By knowing that the path founded is
a sequence of (x, y) points, the total distance from the starting point to the ending
one can be calculated and, thanks to that, the time trajectory can be computed e.g.
consider a 5 meters path and the robot speed equal to 0.5 m/s; the robot will take
almost 10 second to accomplish the task, indeed the trajectory will finish more or
less at 10 s from the starting time and the path will be spread over this time. In this
way, a trajectory of the form (x(t), y(t)) can be obtained and knowing that these are
flat output the θ(t) angle trajectory can be computed as θ(t) = Atan2(y(t)

x(t)). These
explanation has been quite rude but looking at the timing law in section 4.4, the
trapezoidal speed profile chosen will be clear.
Now, the trajectory [xr(t) yr(t) θr(t)]T has been found and the next step is to find a
control strategy to let the robot follow this trajectory.

3.3.3 Trajectory tracking: backstepping approach

Trajectory tracking control strategy is a necessary step for the motion planning [28].
Once that the trajectory has been chosen the robot starts moving along it in open
loop, i.e. without any measure. In this way, the possible initial position errors or
integration errors caused by the dead reckoning are not considered. To overcome
this problem a trajectory tracking control strategy must be applied to our robot
such that, thanks to the localization system and the trajectory generated, the car is
able to perform the task imposed with almost zero final error. In this case the robot
must follow a 2-dimensional trajectory which implicitly comprise also the θ angle.
First of all, let’s define the error between the trajectory reference and the real
position of the robot: 

ex(t)
ey(t)
eθ(t)

 =


xr(t)− x(t)
yr(t)− y(t)
θr(t)− θ(t)

 (3.8)

Starting from this point and using the same technique of [28], i.e. the backstepping
method, the control law is found. Is important to stress the following velocity

3.4 Approaching movement 29

relation before starting: 
ẋ

ẏ

θ̇

 =


v cos θ
v sin θ
ω

 (3.9)

The backstepping method is a Lyapunov-based controlling design technique generally
used with triangular systems, i.e. strict-feedback systems. It is an iterative procedure
which aim to create a Lyapunov function for the whole system which assures the
stability of the system. A similar approach for a car-like robot has been presented
also in [1].
The results, after that the backstepping method has been applied on the nonlinear
system, is:

v(t) =
√

(˙xr(t) + c1ex(t)) + (˙yr(t) + c2ey(t)) (3.10)

α(t) = arctan (˙yr(t) + c2ey(t))
(˙xr(t) + c1ex(t))

(3.11)

ω(t) = ˙α(t) + c3(α− θ) (3.12)

α(t) is a support function necessary for the development of the controller with
the backstepping method and it represents the desired behavior for θ(t). In fact,
by looking at 3.10, 3.11 and 3.12 its clear that if ex(t) = ey(t) = 0 then v(t) follow
exactly the references ẋr and ẏr and introducing this result in 3.11 then α(t) = ˙θr(t)
and the control 3.12 aim to stabilize the angle of the car exactly over its reference.
Now that the controller for the velocity inputs v(t) and ω(t) has been computed
the linear velocity on x and y axis can be decoupled with the equations in 3.9 and
use the inverse kinematic of the robot in 3.5 to obtain the control inputs for each
wheel. In this way, the robot can move from every admissible initial point to every
admissible ending point in a two-dimensional space.

3.4 Approaching movement

As already introduced in 3.3.1, when the distance of the plants’ beds is too high to
Perform the picking task directly from the road center, an approaching movement
must be performed to accost the manipulator arm to the plant. It is important
to stress that, if the Voronoi diagram technique is not used in the planning stage
then the approaching movement could be probably unnecessary because, by creating

30 3. Robot mobile platform

manually a path, the user could get rid of this approach building a path near enough
to the plants. However, for visual recognition purposes it should be probably almost
always implemented.
Generally, it is possible to assign an ending point to the carrier exactly in front of
the plant and let do all the work at the motion planner but in this way the final
orientation is not always well considered because the Voronoi diagram technique
works on a Cartesian plane which means that the θ states is not directly controlled
but it is derived by the other two states, i.e. form the two flat outputs x and y. For
this reason, the final orientation of the robot may not be suitable for the picking
task resulting in the necessity of a robot reorientation close to the plant which
could create some damages either at the plants themselves or at the environment in
general. Instead, taking advantage of the omni-directionality of the robot and using
the approaching movement here presented, a safety translation of the robot through
the plant can be assured.
In practice, when the robot stops in the ending point in the road center in front of
the plants, it initially searches for ready zucchini flowers and then, if some of them
are present, it starts the approaching movement which consists in a translation of
the robot along its transversal axis. To be more clear, when the robot is arrived at
its current ending position, represented by one of the red dots in Fig. 3.9 its θ angle
is exactly parallel to the plants’ beds for construction of the Voronoi diagram and,
thanks to its omni-directionality, it moves in an horizontal direction to get closer to
the plants.

Figure 3.11. Approaching movement of the robot through the plant to accomplish the
picking task

3.4 Approaching movement 31

As can be seen in Fig. 3.11, considering the case of approaching the left bed, the
robot moves through left until a good picking position is reached. In the figure has
been highlighted the direction of rotation of each wheel and it is important to stress
also that the velocity of each wheel must be the same to obtain a perfect transversal
translation. This movement can be decided in two ways:

• the distance is defined manually depending on the distance from the plant
ending point on the roadmap and the approach ending point near the plant

• the distance is automatically detected from the vision system or other proximity
sensors

Both the choices have pros and cons. The first one must be added manually each
time that the distance between the beds changes and its more sensitive with respect
to many errors e.g. the beds distance can slightly vary if the plants rows are not
well constructed. The second choice instead is more reliable because depending on
the distance detected from the plant it changes the robot displacement, but it is
more costly and difficult to implement. The first option could be generally preferred
because it does not always matter if the robot has a final position error of few
centimeters. Anyway, considering the unexpected behaviors which could happens
the second choice is more consistent.

33

Chapter 4

Manipulator arm

The second component analyzed is the manipulator arm. This part is crucial for the
fulfillment of the picking task. The robotic arm should be able to move toward the
flower (or fruit) without colliding with the sensible plant stalks to not damage it,
approach the flower with the end-effector, separate the flower from the plant without
causing any harm to it and bring back the arm to a safety position to place the
picked flower into a collection box. To perform these movements the robot should
be capable of sensing the flower and, more important, compute its position and
orientation with respect to the end-effector. For these reasons, the robotic arm
must be incorporated with a vision system which is useful to perform the flower
localization. A treatment above the vision systems has been reported in 4.3. Another
special attention is directed to the end-effector system which should be able to pick
the flower without damaging it or the plant and, maybe, could also avoid some
infection problem between the plants, as it will be specified in 4.2

4.1 Manipulator arm structure

In most of the existing applications a 6 DOF robotic arm or at most 7 DOF one
has been used for the picking task. Due to the dexterity of these robots, they are
necessary to work in an environment in which the possibility of collision is high.
Using them, the manipulator can follow different trajectories and perform different
poses to approach the goal object. These wide possibilities of actions, i.e. velocity
directions available, improve the motion planner because the possibility of movement
are many and the obstacle avoidance task is simplified. For our application, a 6 DOF
manipulator arm composed by an anthropomorphic arm (3 DOF) plus a spherical
wrist (3 DOF) has been chosen. The spherical wrist assigns to the end-effector the
required dexterity for this spatial task. By adding another DOF the robot dexterous
space is improved because its redundancy admits more configurations for a single

34 4. Manipulator arm

point with respect to a 6 DOF arm. Generally, the addition of this degree of freedom
is not strictly needed although in lots of agricultural task it is used to ensure a
smooth motion of the end-effector through the free configuration space, reducing
the possibility of obstacle collision which could damage the robot, the environment
or the plants.
Anyway, the 6 DOF manipulator arm has been chosen for this work because it is
slightly simpler than the 7 DOF one and because regarding the conformation of the
plant it is enough for this picking task.

4.1.1 Forward kinematics

The direct kinematics of this robot is derived directly by using the Denavit-
Hartemberg convention. This convention establishes a standard procedure for
the derivation of the robot direct kinematic needed to find a relation between the
end-effector pose and the robot configuration, i.e. the joint angles.
In this case, the robot pose is described by six variables, three for the position of the
end-effector and three for its orientation xe = [px py pz θ φ ψ]T . Moreover, also the
joint variables are six and they can be expressed as q = [q1 q2 q3 q4 q5 q6]T where
each qi represents the angle θi of the joint i of the robot. Returning to the Denavit-
Hartenberg convention, it mainly consist in finding four parameters, called DH
parameters, that will be used to create an homogeneous transformation Ai−1

i (DHi)
which will be used to describe mathematically the connection of the robot kinematic
structure. DHi represents the Denavit-hartemberg parameters for each joint i which
are DHi = [ai αi di θi]. It is important to stress that due to the rotatory structure
of the joints the only DH parameter which can change with time is θi for each joint
i, indeed, the homogeneous transformation can be rewritten as Ai−1

i (θi). Moreover,
by noticing that the parameter θi represents exactly the configuration value qi of
joint i the final homogeneous transformation will be described as Ai−1

i (qi). The DH
parameters are used to build the coordinate transformation between the reference
frames attached to each robot link with the following one. In practice, with this
coordinate transformation the reference frame attached to the joint i is translated
and orientated in such a way to coincide with the reference frame of joint i + 1.
With this connection, by changing the value of the θi parameter, is always possible
to describe the orientation of link i+ 1 with respect to link i for any joint variable
value θi ∈ [0, 2π)(rad).
Once that all the connections, i.e. all the homogeneous transformations, have been
computed, the direct kinematic T 0

n(q) of the robot can be directly found with the

4.1 Manipulator arm structure 35

ordered matrix multiplication of the homogeneous transformation:

T 0
n(q) = A0

1(q1) ∗A1
2(q2) ∗ · · · ∗An−1

n (qn) (4.1)

. A full treatment of the Denavit-Hartemberg convention can be founded in [68]
The robot direct kinematic has the form:

T 0
6 (q) =

[
n0

6 s0
6 a0

6 p0
6

0 0 0 1

]
(4.2)

where n0
6, s0

6, a0
6, p0

6 are four 3x1 vectors representing respectively the roto-translation
of the normal direction, the slide direction, the approach direction and the position
of the end-effector with respect to the first joint reference frame. In practice, by
looking at Fig. 4.1 can be said that n6, s6 and a6 are respectively the vectors x6,
y6 and z6 of the end-effector and then the matrix R0

6(q) = [n0
6 s

0
6 a

0
6] represents the

rotation matrix of the first joint reference frame with this last one attached to the
end-effector. Instead, p0

6 is the vector which translate the origin of the first reference
frame over the origin of the end-effector one.

Figure 4.1. Anthropomorphic arm with a spherical wrist (6 DOF configuration) [68]

For the peculiar structure chosen, see Fig. 4.1, the DH parameter can be seen in
Table 4.1. With these DH parameters the six Ai+1

i (qi) homogeneous transformations
can be iteratively computed and thanks to equation 4.1 the following component

36 4. Manipulator arm

can be found:

n0
6(q) =


c1(c23(c4c5c6 − s4s6)− s23s5c6) + s1(s4c5c6 + c4s6)
s1(c23(c4c5c6 − s4s6)− s23s5c6)− c1(s4c5c6 + c4s6)

s23(c4c5c6 − s4s6) + c23s5s6

 (4.3)

s0
6(q) =


c1(−c23(c4c5c6 + s4s6) + s23s5c6) + s1(−s4c5c6 + c4s6)
s1(−c23(c4c5c6 + s4s6) + s23s5c6)− c1(−s4c5c6 + c4s6)

−s23(c4c5c6 + s4s6)− c23s5s6

 (4.4)

a0
6(q) =


c1(c23c4s5 + s23c5) + s1s4s5

s1(c23c4s5 + s23c5)− c1s4s5

s23c4s5 − c23c5

 (4.5)

p0
6(q) =


a2c1c2 + d4c1s23 + d6(c1(c23c4s5 + s23c5) + s1s4s5)
a2s1c2 + d4s1s23 + d6(s1(c23c4s5 + s23c5)− c1s4s5)

a2s2 − d4c23 + d6(s23c4s5 − c23c5)

 (4.6)

Finally, substituting 4.3, 4.4, 4.5, 4.6 into 4.2 the complete direct kinematic formula
is found.

Link ai αi di θi

1 0 π
2 0 θ1

2 a2 0 0 θ2
3 0 π

2 0 θ3
4 0 −π

2 d4 θ4
5 0 π

2 0 θ5
6 0 0 d6 θ6

Table 4.1. DH parameter of the 6 DOF structure in Fig. 4.1

The forward kinematic form represented in 4.1 is not generally used because
the homogeneous transformation is a matrix composed by a rotation matrix and a
translation vector. Instead, the direct kinematic is generally preferred in another
more compact form:

xe = k(q) (4.7)

Equation 4.7 is preferred with respect to 4.1 because its non-linear relation express
directly the connection between the robot pose variables with its joint values. The
robot workspace is a 3D space and thus six component are needed to express the

4.1 Manipulator arm structure 37

pose of an object in it: xe = [px py pz θ φ ψ]T . Luckily, the first three components
can be extracted directly form 4.1 because its last column represents exactly the
homogeneous vector which connect the position of the first joint of the robot with
the position of the end-effector.
Regarding the three angles θ, φ and ψ the computation is slightly more difficult.
In fact, the angles need to be extracted directly from the rotation matrix in the
homogeneous transformation and this is not foregone. Moreover, there exist different
ways to express these three angles, e.g. in an Euler angles form, and this can be
done by analyzing directly the rotation matrix and extracting the angles from its
entries. A simple way to express the angles θ, φ and ψ is in the ZYZ Euler form and
the method for the extraction of this angles from the rotation matrix is presented in
appendix A.
It’s important now to stress that the direct kinematic expresses the relation between
the reference frame 0 of the robot first joint to the reference frame 6, also known
as e, of the robot end-effector. Once that the robot is placed in a fixed location,
another homogeneous transformation must be considered, the one which connect the
robot base reference frame with the first reference frame of the robot. This operation
is simple because, once the homogeneous transformation TB0 is found, it has to be
pre-multiplied to the direct kinematics of the robot to obtain the final connection.
The same happens if there is the necessity to express the position and orientation
of the robot with respect to the environment reference frame. In this case the
transformation TWB express the roto-translation between the environment reference
frame and the base reference frame of the robot. In this case, the TB0 homogeneous
transformation is composed by a simple translation of the base reference frame on
the first forward kinematic one. In fact, the structure is:

TB0 =


0 0 0 x

0 0 0 y

0 0 0 z

0 0 0 1

 (4.8)

where x, y, z position depends on the position of the first direct kinematic reference
frame with respect to the base one.

4.1.2 Inverse kinematics

Although the robot forward kinematic could be useful for many tasks, another
important connection between the joint variables and the robot pose is given by the
inverse kinematic. This relation is the opposite of the direct one because starting
from the robot end-effector position and orientation values, it is possible to compute

38 4. Manipulator arm

the joint variable ones using the inverse kinematic. This relation is very useful
because by giving a pose reference to the robot, i.e. a xe reference (position and
orientation in this case), the robot can adjust its pose using references in the joint
space.
In general, most of the robots are already geared with some low-level controllers,
which means that the feedback control loop for low-level tasks i.e. dynamic ones, is
already implemented and this include also the inverse kinematic. In this way, the
user can control the robot by directly giving the reference in a Cartesian fashion and
the robot performs the work itself. The solution here presented has been obtained
from [68] where a wide treatment of different kinematic structures is given.
Let’s begin by highlighting that in general the 6 DOF manipulator arm structures are
composed by a supporting structure characterized by 3 DOF and a spherical wrist
attached to it, always composed by 3 DOF. The idea behind this concept is that, by
looking at the structure under this prospective, the inverse kinematic problem can
be decoupled into two sub-problems, considering, in this way, the position and the
orientation of the robot separately.
To do this, it is important primarily to find the point pW which separates the two
kinematic chains, see Figs. 4.2 and 4.3, because the supporting structure joint
variables will be computed with respect to it to obtain the inverse kinematic solution
of an anthropomorphic arm with the end-effector centered in pW (obviously this is
the solution for the position of the 6 DOF structure). For the structure considered,
see Fig. 4.1, pW is centered exactly into the spherical wrist center of the fifth joint.
Now, using the direct kinematic presented in 4.1.1 the separation point can be found
as

pW = p0
6 − d6a

0
6 (4.9)

Can be noticed how the equation in 4.9 is dependent only by the joint variables
which are connected to the robot position. It is now possible to start with the inverse
kinematic computation for the two different structures; the anthropomorphic arm
solution will be firstly presented and then the spherical wrist one.

4.1 Manipulator arm structure 39

Anthropomorphic arm inverse kinematic solution

Figure 4.2. Anthropomorphic arm structure. The length of the last link has been called
d4 because this structure is related with the arm in Fig. 4.1

Consider a generic Anthropomorphic arm structure composed by three rotary joints
such the one in Fig. 4.2. Its forward kinematic expressed for pW is obtained always
using the Denavit-Hartemberg convention or alternatively can be extracted from
the kinematic of the 6 DOF robot substituting d6 = 0 and θ3 with θ3 + π

2 .
Anyway in table 4.2 the DH parameters are presented while in 4.10 is expressed the
forward kinematic of the robot.

Link ai αi di θi

1 0 π
2 0 θ1

2 a2 0 0 θ2
3 d4 0 0 θ3

Table 4.2. DH parameters for the anthropomorphic arm structure of Fig. 4.2

T 0
3 (q123) =


c1c23 −c1s23 s1 c1(a2c2 + d4c23)
s1c23 −s1s23 −c1 s1(a2c2 + d4c23)
s23 c23 0 a2s2 + d4s23

0 0 0 1

 (4.10)

From 4.10 the relation between the end-effector position pW and the first three robot
joints variables q123 = [θ1, θ2, θ3] is

pWx = c1(a2c2 + d4c23) (4.11)

40 4. Manipulator arm

pWy = s1(a2c2 + d4c23) (4.12)

pWz = a2s2 + d4s23 (4.13)

By elevating to the power of two the equations 4.11-4.13 and then summing them
the following result is obtained

p2
Wx + p2

Wy + p2
Wz = a2

2 + d2
4 + 2a2d4c3 (4.14)

which is dependent only by the cosine of θ3, indeed

c3 =
p2
Wx + p2

Wy + p2
Wz − a2

2 − d2
4

2a2d4
(4.15)

Obviously, the solution is admissible if and only if −1 ≤ c3 ≤ 1 otherwise the point
pW is out of range, i.e. it is not into the work space of the robot.
Now, by posing

s3 = ±
√

1− c2
3 (4.16)

the angle θ3 can be computed with

θ3 = Atan2(s3, c3) (4.17)

The equation in 4.17 provides two different solution depending on the sign of s3:

θ3,1 ∈ [−π, π] (4.18)

θ3,2 = −θ3, 1 (4.19)

following a similar procedure, the solution for θ2 can be found. Taking the sum of
the square of 4.11 and 4.12 it possible to obtain

a2c2 + d4c23 = ±
√
p2
Wx + p2

Wy (4.20)

Equation 4.20 can be rearranged and thanks to some substitution it gives

c2 =
±
√
p2
Wx + p2

Wy(a2d4c3) + pWzd4s3

a2
2 + d2

4 + 2a2d4c3
(4.21)

s2 =
pWz(a2 + d4c3)∓

√
p2
Wx + p2

Wya3s3

a2
2 + d2

4 + 2a2d4c3
(4.22)

Finally, with
θ2 = Atan2(s2, c2) (4.23)

4.1 Manipulator arm structure 41

the second joint variable is found. It is important to be stressed that there are
four possible solutions for θ2 because θ3 have two possible solution, each of which
could have two solutions for θ2. This solutions will be named θ2,1, θ2,2, θ2,3 and θ2,4.
Finally, to find θ1 a simple procedure can be followed, substitute the equation 4.20
into 4.11 and 4.12 obtaining the expressions

pWx = ±c1
√
p2
Wx + p2

Wy (4.24)

pWy = ±s1
√
p2
Wx + p2

Wy (4.25)

that, once resolved, give the two solutions

θ1,1 = Atan2(pWy, pWx) (4.26)

θ1,2 = Atan2(−pWy,−pWx) (4.27)

Now, that all the solutions for the joint variable values have been found, can be seen
how the solutions have given four different robot configurations for the same point
pW :

• (θ1,1, θ2,1, θ3,1)

• (θ1,1, θ2,3, θ3,2)

• (θ1,2, θ2,2, θ3,1)

• (θ1,2, θ2,4, θ3,2)

. This group of possible solution is very useful for obstacle avoidance tasks because
it increases the possibility of finding an admissible path.

Spherical wrist inverse kinematic solution

The spherical wrist, see Fig. 4.3 is used to improve the dexterity of the robot by
increasing its orientation possibilities. Indeed, the inverse kinematic solution of this
subsystem is found by looking directly at its forward kinematic and its orientation
angles will be founded with the Euler angles method explained in appendix A.

42 4. Manipulator arm

Figure 4.3. Spherical wrist structure

Let’s introduce the direct kinematic of the spherical wrist:

T 3
6 (q456) =


c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 c4s5d6

s4c5c6 − c4s6 −s4c5s6 + c4c6 s4s5 s4s5d6

−s5c6 s5s6 c5 c5d6

0 0 0 1

 (4.28)

From the expression in 4.28, by extracting the 3x3 rotation matrix R3
6(q456) which

characterize the end-effector orientation, it is possible to obtain the values of q456 =
[θ4, θ5, θ6] by simply applying the transformations expressed in appendix A.1. In
fact, once that the rotation matrix R3

6(q456) is expressed as

R3
6(q456) =


n3
x s3

x a3
x

n3
y s3

y a3
y

n3
z s3

z a3
z


the solution can be found simply with the following expressions

θ4 = Atan2(a3
y, a

3
x) (4.29)

θ5 = Atan2(
√

(a3
x)2 + (a3

y)2, a3
z) (4.30)

θ6 = Atan2(s3
z,−n3

z) (4.31)

if θ5 ∈ (0, π), otherwise

θ4 = Atan2(−a3
y,−a3

x) (4.32)

θ5 = Atan2(−
√

(a3
x)2 + (a3

y)2, a3
z) (4.33)

θ6 = Atan2(−s3
z, n

3
z) (4.34)

4.2 End-effector 43

if θ5 ∈ (−π, 0).

4.1.3 Differential kinematics

The differential kinematics expresses the relation between the joint velocity space
and the Cartesian speed one. This relation is always linear with respect to the
velocities and the matrix representing this transformation is known as Jacobian
matrix. It is called Jacobian matrix because it is the full-fledged forward kinematic
Jacobian of the robot. There exists two ways to derive this matrix, the first one is,
as just said, by taking the derivative of the forward kinematic expressed as 4.7 and
the other one is by using the robot geometric constructions to derive it. Generally,
the first one, known as analytic Jacobian, is not equal to the second, the geometric
one, but they could be both equally used without many problems. The difference
between the two is in the angular velocity components but this argument is well
treated in literature, for example in [68].
For our purpose, due to the simulative nature of the thesis, the analytic Jacobian
will be used and it will be calculated directly on the programming platform by
deriving the robot forward kinematics, obtaining a 6 × 6 matrix JA(q). Thanks
to this Jacobian, the transformation between the two velocity spaces is possible.
Indeed, the forward and inverse velocity relations are given by:

ẋe = JA(q)q̇ (4.35)

q̇ = J−1
A (q)ẋe (4.36)

The inversion of the Jacobian is possible because the matrix is square, but a special
attention should be used for the robot structure singularites because in that case
the jacobian is no more invertible and the velocities close to any singularity point
are probably too much fast for the robot capabilities. The study and the handling of
these singularities should be introduced in this work, but this will be left for future
studies.

4.2 End-effector

Regarding the end-effector, there exists different solutions each one applied to a
different picking task. There exist end-effectors composed by a four fingers hand
which allows a good grip on the picked fruit and, with a small torsion, it can collect
the fruit without any damage. In [78] this kind of hand has been used for the
collection of tomatoes and, indeed, the structure of this hand fit perfectly with the
spherical form of that fruit. There exists different end-effectors with this form mainly

44 4. Manipulator arm

used to pick tomatoes, strawberries and other small-shaped fruits.
Other kind of pickers are connected to a fruit collector, e.g. a small basket where the
fruit can be housed until it will be placed into the collection box. To cut the fruit
off the plant a linear saw can be used and it can be positioned in such a way that
once the fruit stem has been cut, the fruit fall directly into the collector, see Fig.
4.4. This solution is generally used for high-weight fruits with a woody stem. As an
example, a famous robot which uses this kind of end-effector is the SWEEPER robot
[74], a robot recently built for the collection of sweet peppers. Anyway, the linear
saw can be replaced with a scissors for that plants fruits which has a mild stem.

Figure 4.4. Stylized end-effector for picking different kind of friuts composed by a basket
(in brown) and a linear saw (in grey)

The simpler and most common way for collecting some fruits or vegetables is the
gripper end-effector. This one is the preferred for the zucchini flowers task because
the contact between the flower and the robot is constrained to be only on the stem,
the non-edible part of the flower. In this way by applying a pressure with the gripper
and turning the wrist to apply a torsion, the flower stem can be safety detached
from the plant.
For a soft execution of this task, there exist other more elegant solution such as the
use of a scissors annexed to the gripper. In this way, once the gripper has grasped
the flower stem, the scissors can cut the stem to gently separate the flower from the
plant, see Fig. 4.5.

4.3 Vision system 45

Figure 4.5. Stylized end-effector for picking zucchini flowers composed by a gripper (in
brown) and a scissors (in grey)

Another interesting way to separate the fruit from the plant is the one used in [76]
where the gripper is equipped with a thermal cutting device which, not only separate
the flower form the plant, but also prevents infection transfer between the plants of
the same greenhouse. The zucchini or pumpkin plants, such as all the plants of the
cucurbit’s family, are inclined to have different fungal infections or other diseases
which can be passed plant to plant through the cutting devices. By heating up this
device the illness transmission can be avoided because the overheating destroys all
the bacteria, viruses and fungus which could be present on it. This is a smart idea
that can prevent the diseases transmission trough plants inside the greenhouse and
prevent also the crop losses.

4.3 Vision system

For agricultural picking tasks one of the most important part is the recognition,
maturity evaluation and the fruits localization. Indeed, for the task presented in this
work, the camera, see section 4.3.1, is not only used for the picking task, but also for
monitoring and identifying ones. The first action that the robot performs once it has
arrived on its picking position, see section 2.1, is to turn the end-effector, on which
the camera is mounted, towards the plant to identify some fruits, or flowers in this
case, which are waiting to be gathered, see section 4.3.2. Due to the distance between
the robot and the plant, initially the flower is identified through its color because its
yellow-orange color generally is not present over the plant which is characterized
by a light green hue. In alternative, a generic zucchini flower shape can be saved
in the robot memory to identify the flower also from its shape during the image
processing. The best recognition behavior in this visual recognition task should
be to take different pictures of the plants using at least two point of view of the
end-effector to improve the possibilities of finding the yellow or pale orange hue of

46 4. Manipulator arm

the flower on the RGB pictures. In this way, the robot should recognize the flower
directly on its path. If the flower is recognized then the robot start the approaching
movement, see section 3.4, and once the right picking position is achieved the camera
take a nearest picture of the plant to identify the flowers which are ready to be
picked, see section 4.3.3. Now, using also the depth sensors, the robot chooses a
ready flower and localizes it in a 3D environment, see section 4.3.4. The robot starts
the picking process by driving the end-effector close to the flower. Finally, with a
last picture the robot identifies exactly the position and orientation of the flower
with respect to the end effector and it accomplishes the picking task by grasping
and cutting the flower stem.

4.3.1 Camera specifications

The first things to clarify is that, at least, an RGB camera is needed because
this simplify the identification and recognition task otherwise the robot could not
identify the presence and ripeness of the flower especially when it is far from the
plant. The RGB cameras are equipped with a three-channel sensor which sense
the intensity of the three primary colors (Red, Green and Blue) and analyze them
to reconstruct the original image with some discrete values. The most common
image sensors are the CCD sensor and the CMOS ones; The first one, the Charge
Coupled Device, is characterized by a rectangular matrix composed by pixels. When
a photon collides with the semiconductor, some free electrons are generated which
charge a semiconductor depending on the illumination time integral over the pixel.
The second sensor, Complementary Metal Oxide Semiconductor, is composed by a
rectangular matrix of photodiodes. In this case, the photodiodes are pre-charged
and they are drained when the photon collide with them. In this way, the sensor
measures the quantity of the photons and not their volume and this reduce the
blurring which instead affect the CCD sensors.
Anyway, the cameras are composed not only by these sensors, but other important
components are the shutter, used to control the photon incidence time on the sensors,
the lens, used to focus the light on the image plane and the signal conditioning
analog electronics, used to convert the electric energy of the semiconductors in a
digital color.
Different types of cameras have been created and are used to perform the 3D
reconstruction of an object or environment [56]; the most common are:

1. stereo vision camera. Composition of two or more cameras (or point of views).

2. time of flight (ToF) camera.

4.3 Vision system 47

3. structured light cameras

4. light coding cameras

5. laser triangulation cameras

The first one is characterized by the composition of two or more point of views of
the same object. Generally, this is performed using two or more cameras, but, in
some cases, the same camera can be used to take different picture of the surrounding.
There exists different 3D reconstruction algorithm, the most common are the marker-
based algorithms, where some markers are glued over the object to reconstruct,
e.g. some high colored points which are simple to extract from the images, and the
markerless algorithms which are characterized by the automatic feature extraction
and tracking of some characteristic of the objects.
The second camera, Time of Flight camera or ToF camera, is composed by an
infrared camera and a matrix of lasers. The lasers emit some pulses of light (visible
or infrared) which are reflected by the objects and the environment and returns back
to the infrared camera. The camera computes the phase shift of the sensed laser, i.e.
compute the incidence time, which is dependent on the distance between the object
and the camera. The general equation for the distance computing is

d = td ∗ c
2 (4.37)

where d is the distance, td is the delay time and c is the light speed constant
(299792458 m/s more or less). This Type of cameras allows very fast distance
acquisition but there are also many problems regarding the disturbances, noises and
resolution.
The structured light cameras are composed by a light projector and one or more
cameras. The projector creates some fixed pattern light which will be reflected by
the environment. The cameras sense this pattern, but the environment distorts
it and thanks to some reconstruction techniques it is possible to reconstruct the
surrounding. The pattern can be either unique, one-shot techniques, or multiple,
time-multiplexing techniques, anyway the patterns are generally characterized by a
bar-code form, i.e. black and white consecutive vertical and/or horizontal lines.
The fourth camera type, known as light coding camera, is an evolution of the
structured light cameras. In this case, the light source is continuously turned on
and the infrared light source project a constant semi-random matrix of dots on the
environment. This fixed dot pattern is collected by an infrared camera and then
analyzed for the 3D reconstruction. This kind of cameras are innovative but there
are some problems; the sensed map is not dense because the holes between the
dots are not sensed, the near and far distances are generally not well sensed due to

48 4. Manipulator arm

distortion and attenuation. Moreover, some infrared waves emitted from the sun
and reflected by the environment could disturb the infrared cameras. Anyway, these
types of cameras are considered very valid for their low cost and functionalities for
some robotic tasks and the industry improvement is giving birth to cameras with
better resolution.
The last camera type considered is the laser triangulation camera. As the name
suggest, these cameras are composed by a camera and a infrared light emitter. Due
to the knowledge of the distance between the camera and the emitter, the angle of
the emitter with respect the camera and thanks to the sensing of the infrared dot on
the environment, it is possible to triangulate and compute the distance between the
camera and the pointed object. More sophisticated sensors are composed by a line
of emitters, i.e. a line of infrared dots, which are projected onto the surrounding.
This type of cameras are not able to reconstruct the environment using a single shot
but need to be moved to obtain different measurements for the 3D reconstruction.
Once these cameras types have been presented, it is important to highlight that each
camera type needs to be calibrated for the estimation of its intrinsic parameters,
otherwise the various computations and sensing could be distorted and noisy. For
more information about these, a good reference is [68] and there are also different
resources on the web which treat this argument.

Figure 4.6. Camera position with respect to the end-effector one

The camera chosen to accomplish the task of this work is the Tof camera because
allows fast and simple computations and have great resolution. One of the most
known ToF cameras is the Microsoft Kinect camera [86] which is greatly used for
3D recognition and localization task in literature.
The last thing to say about the camera is its position with respect to the end-effector.

4.3 Vision system 49

The camera is mounted directly on the robot, therfore it is an eye-in-hand camera. It
is positioned directly over the wrist and, in particular, over the last joint connected
to the end-effector. In this way, the camera moves exactly as the end-effector and
points always in its same direction. In fact, the reference frame of the camera with
respect the end-effector is characterized by only a translation, see Fig. 4.6.

Since both the camera reference frame and the end-effector one are on the same
ZY plane the translation can be performed only on that allowing a translation of

Xt =


0
yce

zce

 (4.38)

Where yce and zce values depends on the effective position of the camera with respect
to the end-effector and generally they are both negative because the camera is behind
and above the end-effector, see Fig. 4.6. The final homogeneous transformation is:

T ce =


0 0 0 0
0 0 0 yce

0 0 0 zce

0 0 0 1

 (4.39)

4.3.2 Flower identification

The flower identification is the first block of the algorithm in Fig. 2.1 in which the
camera is involved. The robot points the end-effector towards the contemplated
plant and takes one or more pictures with different points of view. Those photos are
then analyzed by a color clustering algorithm which on the base of the presence or
not of the characteristic yellow hue of the zucchini flower chooses if the picking task
must start or not for that plant.
The RGB camera takes a photo and extract the three matrix layers which repre-
sents the light intensity matrices for the Red,Green and blue wavelength, generally
represented with a vector with range [0, 255]. Indeed, the pixels are composed by
three values all ranging inside that vector, in general

pi ∈ [0, 255]× [0, 255]× [0, 255] (4.40)

With this resolution the camera is able to recognize 256 ∗ 256 ∗ 256 = 16777216
different colors which are useless for our task but most of the camera on the market
use this configuration and change from a resolution to another one is not difficult
because it is enough to normalize the color here presented by dividing the pixel
intensity x by the maximal intensity, i.e x

256 , and then multiply for the new maximal

50 4. Manipulator arm

intensity and round the number to the nearest integer. Generally, the maximal
intensity number is a power of two because depends on the bits assigned to each
pixel.
Anyway, using the chosen configuration a yellow pixel piy is characterized by the
triplet (255, 255, 0) because it is composed by the two fundamental colors red and
green. The zucchini flowers color is like this triplet but has a slight orange hue, in fact
a general triplet for representing its color is (255, 220, 0) and it is represented in Fig.
4.7. The only problem is that the intensity of these colors on the camera depends
on a bunch of factors such as the brightness, the distance, the flower maturity, the
interference on the camera and others. Due to this generally also the camera works
on a range of colors both for the RGB values.

Figure 4.7. The right ripeness flower color. RGB value (255, 220, 0)

Since the aim of this first task is to detect only the flowers presence on the plant,
a precise identification is not needed and, therefore, has been decided to increase
slightly the range of yellow accepted hues. Moreover, the distance, the light and
the camera resolution could affect these values and by increasing this range also
the robustness of the identification is improved. The range to be considered for the
RGB values of the pixels are:

• a value bigger than 220 for the R component

• a value contained in [180, 240] for the G component

• a value inside [0, 80] for the B component

Another important constraint to be considered is R−G > 15 this is because if the
green intensity is close to the red one or even higher the pixel color becomes more
green than yellow resulting in the identification of the unripe flowers or also plants
parts. In this way, a group of possible pixel colors have been selected for the flower

4.3 Vision system 51

identification. In particular the colors vary from the color in Fig. 4.8a to the one
in Fig. 4.8b. The colors in 4.8 are the boundary colors for the identification task,
obviously the optimal color is inside these boundaries as can be seen from Fig. 4.7.

(a) Maximal RGB color for
the right identification
of the flower on the
plant. RGB value

(255, 240, 80)

(b) Minimal RGB color for
the right identification of
the flower on the plant.
RGB value (220, 180, 0)

Figure 4.8. Minimal and maximal RGB colors for flower identification

Once that the color specifications have been identified, a clustering algorithm is
needed to separate the colors of the image into different clusters characterized by
the same or a similar color. In this way, different groups distinguished by their color
can be obtained and used to identify the flower inside the multitude of different
shapes which are present in a greenhouse.
The chosen algorithm for accomplishing this task is the K-mean algorithm, treated
in appendix B, and some results are here presented using an algorithm developed
using the Image Processing Toolbox of Matlab, see algorithm B.1.
The idea behind this separation of colors is to find a cluster where the flower colors
is widely present in a dense way. Actually, this method can be used also for disease
or parasite recognition, but this is out of the aim of this work and, therefore, it will
be postponed for future searching.
By using this algorithm, it is possible to extract from the image in Fig. 4.9 different
pixel clusters based on the different colors in the image.
Before the application of this algorithm, the image has to be transformed from
the RGB space to the CIE XYZ trimulus values one [81]. This image space is
derived by the LMS trimulus values space which is like the human eye sensing. In
practice, the eyes are composed by cones that can sense an electromagnetic wave
which will be processed as a color by the brain. The eyes’ cones feel three kind of
wavelength: Long, Medium and Small (LMS) which generally can be associated

52 4. Manipulator arm

respectively to red, green and blue colors. These trimulus values are well suited
for human beings, but some wavelengths ranges overlap i.e. the three wavelengths
influence each other and they are not linearly independent. This fact could be useful
for the colors reproduction because it is possible to create the same sensed color
for the human eye by using different wavelength, but this could cause problems to
a computer system because the linear dependence of the trimulus values creates
some computational difficulties. For this reason, the International Commission of
illumination (CIE) has created the XYZ trimulus image space which is composed by
three linearly independent values. In particular, the Y axis represents the radiance
or luminance, i.e. the brightness, the Z axis characterize the most of the blue
wavelengths while the x axis is correlated to the other wavelengths. In this way, the
XZ plane is responsible for the color tonality while the Y axis regulate the brightness.

Figure 4.9. Image of a zucchini plant with flowers

This fact introduces also other pros for our work, because, first of all, the colors
can be searched into a two dimensional space which do not consider the brightness of
the color. Therefore, the same color with low and high luminance could be perceived
in almost the same way by the camera; this is not true in the reality because if the
brightness gap is too big the pixel colors could be sensed as different. The second
and more important pro is that by using this image space, the colors are more
compact. Indeed, for example, as reported from [45], the orange hues expressed in
the RGB reference frame has a sparser composition than the one expressed in the
XYZ one. Based on these strengths, the XYZ trimulus values have been chosen to
simplify the computational work.

4.3 Vision system 53

(a) Zucchini plant image divided into
labeled regions. Each color
represents a different cluster
region on the original image

(b) First cluster extracted from Fig.
4.9 characterized by the leaves
and green part of the plant

(c) second cluster extracted from Fig.
4.9 characterized by the
environment and other

unrecognized color regions

(d) Third cluster extracted from Fig.
4.9 characterized by the zucchini

flowers

Figure 4.10. Zucchini image processing with clustering decomposition in three different
clusters

Returning now to our problem, once that the colors has been converted, the
K-mean algorithm is applied. It divides the images, e.g. Fig. 4.9, into a priori
decided number of different color regions. As can be seen in Fig. 4.10 the number of
region decided is three and generally for a greenhouse with a small color noise it
could be sufficient, but in section 6 this will be refuted. It is possible to see how
the original image (Fig. 4.9) is decomposed into three different region labeled with
a different color in Fig. 4.10a. This labeled image allows to separate the clusters
on the original image by using a support mask which is a 1, 0 entries matrix used
to choose the pixels which will be considered (if pi = 1) despite of the ones that
must be discarded (if pi = 0). Using these masks the algorithm is able to divide the
three clusters as can be seen in 4.10. In particular, for this explanatory example, the
three clusters are: Fig. 4.10b where the green part of the plant is present, Fig. 4.10c
where the environment is depicted with other unrecognized color objects and, finally,
Fig. 4.10d where the zucchini flowers are perfectly represented. It is important to be

54 4. Manipulator arm

Figure 4.11. Color noisy zucchini plant image

noticed how in Fig. 4.10b there is a unripe zucchini flower which is rightly assigned
in cluster 1 (leaves) and not in cluster 3 (ripe zucchini flowers).

For a color noisy greenhouse, the choice of three clusters could be not enough
but in that case the clusters number can be increased depending on the quality of
the photos that the robot is able to take. See for example the image in 4.11, the
brightness conditions and the different green hues of that plant create some problem
for the three groups clustering in Fig. 4.12 while the choice of five clusters presented
in 4.13 seems to work properly.

In general, the duty of the farmer, who monitors the greenhouse, is to set the
plant growth in such a way that the picking task is simplest as possible or, at least,
affordable for the robot. There exist different techniques already used in greenhouse
agriculture where the plants are forced to grow in such a way that the pickers’ work
is simplified. The same approach can be used in this case to increase the possibility
of avoiding situations in which the robot encounters some difficulties that could
impede the gathering task.

4.3 Vision system 55

(a) Zucchini plant image divided into
labeled region. Each color represents a
different cluster region on the original

image

(b) First cluster extracted from Fig. 4.11

(c) second cluster extracted from Fig.
4.11

(d) Third cluster extracted from Fig.
4.11

Figure 4.12. Color noisy zucchini image processing with clustering decomposition in three
different clusters

56 4. Manipulator arm

(a) Zucchini plant image
divided into labeled
regions. Each color
represents a different
cluster region on the

original image

(b) First cluster extracted
from Fig. 4.11

(c) second cluster extracted
from Fig. 4.11

(d) Third cluster extracted
from Fig. 4.11

(e) fourth cluster extracted
from Fig. 4.11

(f) fifth cluster extracted
from Fig. 4.11

Figure 4.13. Color noisy zucchini image processing with clustering decomposition in five
different clusters

4.3 Vision system 57

Once that the clusters are all obtained, it is enough to analyze each of them looking
for the colors depicted in Fig. 4.8. This operation is simple, the robot scans each
cluster by comparing the images RGB values with the ones presented before. If in
one cluster there is a big pixel percentage belonging from the chosen RGB range,
then there is an high possibility that at least a flower is present. This step is even
more useful for the task in section 4.3.3 because in this way the robot is able to
identify the flower cluster and use it for the ripeness control and separation.
For this task only the presence check is needed, indeed this algorithm is enough and
the robot can pass to the next step of the algorithm which is the approach and the
ripeness identification.

4.3.3 Flower ripeness

The algorithm for the ripe flowers selection is like the one in section 4.3.2 because
also the flower ripeness can be detected trough the color. The only difference is that
now the camera is very close to the plant and can take more precise pictures of the
surrounding flowers.

(a) Maximal RGB color for
right ripeness evaluation
of the flower on the plant.
RGB value (255, 255, 40)

(b) Minimal RGB color for
right identification of the
flower on the plant. RGB

value (240, 180, 0)

Figure 4.14. Minimal and maximal RGB colors for flower ripeness

Moreover, when the distance between the plant and the camera decreases, the
efficiency of the flash improves, resulting in a more limpid and shining image. Indeed,
the range of the pixel intensity values for the flower ripeness must be re-tuned. This
time the RGB values are:

• a value bigger than 240 for the R component

• a value contained in [180, 255] for the G component

58 4. Manipulator arm

• a value inside [0, 40] for the B component

In this case, the constraint between the red and green values does not have to be
added because if the R component assumes very high values it does not matter if
the green component exceeds with respect to the red one, the yellow intensity will
be always acceptable and the maturity of the flower is assured.
As can be seen with the comparison between Fig. 4.8 and 4.14, the colors depicted
in the first images are paler while the second ones are brighter. This choice depends
mainly on the distance between the robot and the plant because with a greater
distance the quality of the photograph is slightly worst and it can be misleading
for some colors. However, when the robot is close to the plant, the photos are
more similar to the reality. This sharpness allows to identify the colors and then to
separate the yellows hue of the flowers by some possible plant yellow leaves. In this
way, the flower misidentifying is improved and the robot can save time and battery
for the next flower or plant.

Figure 4.15. Original flower cluster extracted with the K-mean algorithm

The ripeness recognition algorithm is like the identification presented in section
4.3.2. The only difference is that now the flower recognition has a more important
role because now, it is necessary to distinguish the flowers from the plant and the
environment to extract more information from the selected plant.
Once that the flower cluster has been founded (in the same way of the flower iden-
tification), the block starts with the second operation, the segmentation and the
listing of the possible flowers’ centroids. In this way, a list of (x, y) values of the
camera image plane are obtained and they will be used for the 3D localization of
each single flower. For this, a flower segmentation algorithm has been implemented
to separate and to identify each flower, see algorithm C. At each flower is assigned a
centroid and an area inside a border, called mask. This algorithm is used to obtain
a flowers separation to simplify their 3D localization.
The algorithm is presented in appendix C while here some results and observations

4.3 Vision system 59

are reported.

(a) Cluster binarization (b) Noise attenuation

(c) Holes filling (d) Final labeled and separated
images with flower centroids

Figure 4.16. Segmenteation of cluster in Fig. 4.15

The segmentation algorithm is applied to the clustered flower image extracted
with the K-mean algorithm (B.1), see Fig. 4.15. It starts with the image binarization,
see Fig. 4.16a, to obtain a black and white image. Black and white images, due to
their simplicity, improve the computations and consequently also the computational
time of the segmentation algorithm. Once that the image has been binarized the
noise is attenuated i.e. the outliers under a certain size range in the image are
cancelled, see Fig. 4.16b. Subsequently, the holes inside the image closed bound are
filled to have different flat surface without black holes inside of them, see Fig. 4.16c.
Finally, the white surfaces present in the image are labeled and separated and their
centroids are computed with a simple pixel position mean.
With this algorithm, it is possible to count the number of present flowers on a plant
and separate them also extracting their centroids. This is the first real separation
of the flowers and the algorithm can then continue with the 3D localization of the
flower stem. In Fig. 4.17 can be seen the final separation of the flowers with the
respective centroids.

60 4. Manipulator arm

(a) First separated flower

(b) Second separated flower

Figure 4.17. Flower separation

Even in this case some problems could arise when the image is too much noisy
or there are some flowers in the images which are super imposed or too close each
other. For example, in the uncommon but possible case in Fig. 4.18a there is the
presence both of superimposed and near flowers.
The results obtained by applying the separation algorithm to this image can be
founded in Fig. 4.18. As can be seen from Fig. 4.18b, 4.18c, 4.18d, 4.18e, 4.18f the
first two labeled groups are not composed by a single flower but from a group of
them while the flowers in Fig. 4.18g, 4.18h,4.18i are well separated. To overcome this
problem either a post-processing algorithm or an Euclidean segmentation algorithm
can be applied to each separated cluster to verify if it is composed by a single
flower or a group of them. If the cluster is composed by a group of flowers some
identification techniques can be applied to separate them and allow the robot to
consider them singularly [53]. This post-processing separation is not considered
in this work because the environment is considered ideal, i.e. the flowers are not
superimposed or in large groups such as in Fig. 4.18. This is because the flowers are
picked almost every day by the robot and it is rare that in just 24 hours the flowers
on a single plant flourish all together.

4.3 Vision system 61

(a) Original clustered image

(b) Cluster binarization (c) Holes filling

(d) Color labelled image for
separated flowers

(e) first flower separated

(f) second flower separated (g) third flower separated

(h) fourth flower separated (i) fifth flower separated

Figure 4.18. Flower separation

62 4. Manipulator arm

Anyway, this post-processing techniques can be introduced afterward in the code.
In the case that the post-processing methods have some difficulties in identifying and
dividing the flowers, another solution could be to capture some photos with different
point of views and use some more sophisticated techniques to reconstruct the scene
and to obtain a perfect recognition and separation, but this would probably be costly
in time and money.
Now, the cluster has been separated, the centroid of each flower has been computed
and saved in a (XI , YI) array and the robot is ready to localize the flower in the 3D
space and accomplish the harvesting task.
Here a single flower ripeness control could be implemented to check each single flower
maturity. In this way the robot is sure that the selected flower is ready to be cut
but this will also increase the execution time, therefore, this skill should be chosen
from the costumers depending on time and cost behaviors. Anyway, the control is
the same implemented before: if the pixel colors of the image which are inside the
RGB ranges depicted above exceed a chosen percentage, then the flower is ready to
be cut.
It is important to be stressed that, in this work, the color of the flower has been
considered as a good parameter for the classification of the flowers and to distinguish
them from the leaves and the environment. In some cases, this could be not enough
and some better classification methods must be used for the classification of the
fruits. As an example, there exists in literature many cases where some machine
learning algorithm learns different information above fruits and surrounding and
they are then able to distinguish and classify them in different classes, e.g. fruit,
leaf, stem and others. For our purposes, the simpler approach proposed could be
considered enough because also this modification can be made at a later stage.

4.3.4 3D localization

The information used until now for the flower identification and raw localization
was based only on RGB data. As introduced in section 4.3.1, an RGB-D camera
has been used to extract also depth information of the surrounding. For the flower
3D localization, these information are essential because the projection of the 3D
space onto the 2D image surface implicitly cause a loss of information, especially
regarding the world space depth. Thanks to the depth information the robot can
approximately reconstruct the 3D environment or, at least, sense that information
which are essential for the picking task.
The flower 3D localization is used in two following steps; the first one is the
manipulator approaching movement through the plant which is characterized by
the obstacle recognition and avoidance and the approximately placement of the

4.3 Vision system 63

end-effector close to the flower. The second, instead, is the real picking task, i.e.
the robot end-effector is pointing the flower, the image processing is creating a 3D
shape of the flower assigning to it a position and orientation in the 3D space and
then, once the final pose has been found, the robot accomplish the task.
The first step starts with the extraction of one of the centroids from the list created
in the previous step, see section 4.3.3. Each centroid (XI , YI) is associated with
an area enclosed by its border. The aim of this step is to approach the flower in
a close enough standardized position from which the robot can detect the flower
and localize the stem. Thanks to the depth sensors and the centroid knowledge the
robot can localize the flower position in the 3D environment, see section 4.3.4. First
of all, the RGB images resolution must be shrunk to fit the resolution of the depth
cam (generally, the resolutions are different, e.g. RGB camera in full HD while
depth camera is in low resolution). This passage is necessary because, otherwise, the
different images resolutions will cause a wrong estimation of the flower localization.
Once that the image has been shrunk a simple 3D position estimation can be applied
using the formulas:

zε = D(XI , YI)− η (4.41)

xε = zε(XI − Cx)
fx

(4.42)

yε = zε(YI − Cy)
fy

(4.43)

Where D(X,Y) is the depth value sensed from the depth cam in the pixel
position (X,Y), Cx and Cy are the coordinates of the principal point on the 2D
image plane, generally these coordinates represent the image center and fx and fy
are the camera focal lengths. In general, Cx, Cy, fx and fy are estimated using the
camera calibration introduced in section 4.3.1.
The real flower position estimation is the one with η = 0, but in this first part
the camera should only go close to the flower and not to completely approach it.
Therefore, η is set to be 30/40 cm before the 3D estimated position, thus the camera
is quite close to the flower, but it is also able to perform the last 3D localization.
Once that the position error for the camera has been found, Xε = [xε yε zε]T , also
the desired orientation of the camera with respect to the flower is computed. Since
the vector Xε point at the identified flower center, the most intuitive way of doing
it is to rotate the camera in such a way that the z axis of the camera is directed
in the same direction of the flower vector. To do this operation a simple way is to
transform the vector Cartesian coordinate in its spherical ones [83], see Fig. 4.19
and then rotate the camera reference frame over the vector using the angles just

64 4. Manipulator arm

found.
The Cartesian vector [x y z]T is transformed in (r, θ, φ) where r is the magnitude
of the vector, i.e. its length, θ is the angle between the vector and the z axis of
the reference frame of application and φ is the angle between the projection of the
vector over the XY plane and the x axis of the reference frame.
The two variables of interest are θ and φ because performing a rotation around the
z axis of φ radiant and then performing another rotation around the new reference
frame y axis of θ radiant the z axis of the reference frame is perfectly aligned over
the considered vector. The spherical coordinates are computed with the following
formulas:

r =
√
x2 + y2 + z2 (4.44)

θ = arctan

(
y

x

)
(4.45)

φ = arccos

(
z

r

)
= arctan

(√
x2 + y2

z

)
(4.46)

Now the rotation to be performed are:

1. The rotation of φ around z axis

Rz(φ) =


cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (4.47)

2. The rotation of θ around the new y axis named y’

Ry′(θ) =


cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 (4.48)

With these two rotation matrices the final rotation can be found performing the
matrix multiplication

Rε(φ, θ) = Rz(φ)Ry′(θ) =


cosφ cos θ − sinφ cosφ sin θ
sinφ cos θ cosφ sinφ cos θ
− sin θ 0 cos θ

 (4.49)

4.3 Vision system 65

Figure 4.19. Spherical coordinate of a Cartesian space vector

Finding in this way the final homogeneous transformation:

Tε =
[
Rε Xε

0 1

]
(4.50)

The homogeneous transformation in 4.50 represent the error that the camera has to
recover to be in the position and orientation desired and it can be applied directly
to the end-effector for two main reasons:

• The error vector Xε is a free vector and can be applied to every point in the
space

• The camera and the end-effector has always the same orientation in the space

Then, the error homogeneous transformation Tε can be applied directly to the
end-effector.
Now that the approaching position and orientation are known, the robot move close
to the flower with the kinematic control presented in section 4.4.2. To use this
control technique, the position and orientation information inside the homogeneous

66 4. Manipulator arm

transformation Tε must be reduced in a minimal representation of the form

x̄ε =



xε

yε

zε

θε

φε

ψε


(4.51)

The first three component of 4.51 are exactly the same of Xε while the others should
be extracted from Rε matrix using the ZYZ Euler angles as explained in appendix
A.1. The error state x̄ε has a bar over the x only to avoid confusion between
end-effector state and its desired coordinates.
This kind of control can be used because, as explained in section 4.3.2, the robot
works in an ideal environment, thanks to the farmers which set up the plants to
avoid obstacles between the flowers and the robot.
Once that the robot has approached the flower, the camera capture another image,
like the one in Fig. 4.20a, which is used to extract the centroid of its stem and its
borders, see Fig. ??. This is the second task of the 3D localization. It is the most
difficult task of 3D localization because now the robot has a small error range due to
the delicate picking task. There exists different solution in literature most of which
use convolutional neural networks and other techniques to extract from the image
the stem position and orientation. For simplicity, in this work, the stem position
estimation is simplified by highlighting the flower stem on the picture, see Fig. 4.20b.
In this way, the robot is able to extract the position information from the image,
using the RGB-D camera in the same way of the flower clustering in section 4.3.2.
Indeed, by applying the same algorithm B.1, the robot is able to recognize the flower
stem and extract the information of its centroid, see Fig. 4.21.

4.3 Vision system 67

(a) Zucchini flower image after
the manipulator arm approach

on plant in Fig. 4.9

(b) Approached plant of Fig. 4.9
with the stem highlighted in

red

Figure 4.20. Highlighting of the flower stem to simplify the estimation of the stem position
and orientation

(a) Labeled clustering of Fig.
4.20b

(b) Segmented cluster
containing the stem of the

flower in Fig. 4.20b

(c) computation of the
centroid and the borders
of the zucchini flower
stem in Fig. 4.20b

(d) Final stem extracted with
its centroid in Fig. 4.20b

Figure 4.21. Segmentation of the zucchini flower stem in Fig.4.20b

Finally, the picking task can be performed by simply directing the robot end-
effector through the stem centroid and grasp the flower. Finally, after the cutting of

68 4. Manipulator arm

the flower stem, the robot put the picked flower in the box and return to its home
position either to pick another flower or to continue to the next algorithm location.

4.4 Motion planning and control

As it is clear from the previous section 4.3, the motion planning of the robotic arm
need to be coordinated with the visual recognition system. In fact, although the
two blocks are generally considered separately in literature, they are strictly related,
because, without the visual recognition, the robot arm is blind and cannot perform
its task. The robot has to perform different movements depending to the goal
point and the orientation of the end-effector. The feedback control loop uses only
joint position information, indeed the technique presented is not a visual servoring
methods but it uses visual information only to estimate the flower position and
orientation to perform the movement. This method could result in a more damaging
movement because the robot is not considering the obstacle in its path, but this
risk is reduced because the robot works in a ideal environment where the plants are
positioned in such a way to give a free workspace and a simple picking position to
the robot. Moreover, the zucchini plants are not rigid, but they are very flexible
and this reduce the plant’s parts breaking in case of collision.

4.4.1 Trajectory planning

The information extracted with the vision system provides an error reference useful
for the trajectory planning. Starting with that data, the robot creates a path xd(s),
where s is the path curvilinear abscissa, and then creates a timing low s(t) depending
on the distance and the robot speed constraints.

Path planning

Starting with the information found in section 4.3.4, (for example error state vector
4.51) the path planner in the robot central unit builds a path of the form f(s) using
as dependent variable the curvilinear abscissa s. In this way, the path planning and
the timing low for the trajectory can be essentially decoupled and can be changed
almost independently to each other. Since the path between the end-effector position
and the goal position is considered obstacle free and the distance to be traveled is
not so much, the path takes a linear behavior which means a point-to-point segment.
The position and orientation paths will be considered separately. Starting with a
general error state vector, i.e. a 6× 1 vector of the form x̄ε = [xε yε zε θε φε ψε]T ,
The position path p(s), i.e. the path for the first 3 rows of the error state vector, is

4.4 Motion planning and control 69

computed as:
p(s) = pi + s

pε
‖pε‖

(4.52)

Where pi is the initial position of the path, equal to the current position of the
end-effector, and pε are the first three components of x̄ε. With 4.52 a linear path,
dependent on the variable s, has been created, starting from the current position of
the end-effector and finishing in the goal point. As described in section 4.4.2, the
closed loop reference is the desired joint velocity, therefore a ṗ(s) velocity reference
is needed for this scheme. That velocity can be computed deriving directly p(s) with
respect to s. Indeed, the velocity reference path is:

ṗ(s) = ṡ
pε
‖pε‖

(4.53)

For the orientation a similar approach can be used, the only attention should be
given to how the end-effector angles and the goal ones have been expressed. In this
work, the choice is to use the Euler ZYZ angles, see appendix A.1, therefore both
the current state vector and the desired goal vector orientations are expressed in
this form. If this angle structure is maintained, it is possible to build an orientation
path reference Φ(s) of the form:

Φ(s) = Φi + s
Φε

‖Φε‖
(4.54)

Where Φi is the current orientation of the end-effector expressed in ZYZ Euler angles
and Φε is the orientation error state vector, i.e. the last three components of x̄ε. In
the same way of 4.53, the "angular velocity" Φ̇(s) is computed as:

Φ̇(s) = ṡ
Φε

‖Φε‖
(4.55)

In this way, the path planning is completed and a path of the form:

ẋd(s) =
[
ṗ(s)
Φ̇(s)

]
(4.56)

has been found.

Timing law

Once that the path has been planned, the last necessary operation to conclude
the trajectory planning is the timing law derivation. This law allows a smooth
movement from the initial to the final point, maintaining the robot joint velocities
below its speed constraints. Here, a generic approach will be used, but once that the

70 4. Manipulator arm

robot velocity specifications or the ones of its joints are known, this approach can
be modeled depending on them. Let’s start by looking at the curvilinear abscissa
function of time s(t). Generally, it is represented as a single timing law s(t) but in
reality it is a vector composed by two different timing laws, one for each component of
4.56. To distinguish them, two different curvilinear abscissa will be here introduced;
the position curvilinear abscissa sp(t) which is the one connected to path 4.52 and
the curvilinear abscissa sΦ(t) which is the one expressed in 4.54. These two variable
vary in the two different range: sp(t) ∈ [0, ‖pε‖] and sΦ(t) ∈ [0, ‖Φε‖]. In particular,
the left extreme values are linked to t = 0 while the final ones are linked to t = T ,
where T represent the ending time of the trajectory. The curvilinear abscissa s(t)
could be also normalized to obtain a variable ŝ ∈ [0, 1] but this is not strictly needed
and, generally, it is done only to make the computations clearer. The relation
between this two variables is

s(t) = ŝ(t)
l

(4.57)

where l represent the path length either in meters for position or radiant for orienta-
tion. To make things as simple as possible, a single general case is proposed because
the application for position or orientation is straightforward.
There exists different types of timing laws such as polynomials, linear-parabolic and
others but, for simplicity, a trapezoidal timing law for the velocity references has
been chosen, see Fig. 4.22. The aim is to find the variable ŝ(t) for a generic path
p(s) which meets the robot velocity and acceleration constraints, i.e. ṗ(t) < Vmax

and p̈(t) < Amax, and accomplishes the task. To make it possible, some data should
be available, i.e. the robot should know in advance:

• the length l of the path

• the maximal robot velocity Vmax

• the maximal robot acceleration Amax

It is important to stress that the robot maximal velocity and acceleration are
dependent on the maximal velocities and accelerations of the joints, but generally
an upper bound of these values is always possible to be estimated. Anyway, These
information are needed to compute the time values Ts and T reported in Fig. 4.22.
These time values are computed with:

Ts = Vmax
Amax

(4.58)

T = l Amax + V 2
max

AmaxVmax
(4.59)

4.4 Motion planning and control 71

Figure 4.22. Trapezoidal behavior for a generic timing law

In this way using the time values Ts and T the timing law for the curvilinear
abscissa is:

s(t) =


Amax

t2

2 t ∈ [0, Ts]

Vmax t− v2
max

2 Amax
t ∈ (Ts, T − Ts)

−Amax(t−T)2

2 + Vmax T − V 2
max

Amax
t ∈ [T − Ts, T]

(4.60)

Finally, by deriving the timing law in 4.61 the velocity reference timing law ṡ(t) is
obtained.

ṡ(t) =


Amax t t ∈ [0, Ts]

Vmax t ∈ (Ts, T − Ts)

−Amax (t− T) t ∈ [T − Ts, T]

(4.61)

Now, substituting the position and velocity timing law here found in the previous
path, a trajectory is obtained and it can be used as a reference for the kinematic
control presented in section 4.4.2

72 4. Manipulator arm

4.4.2 Kinematic control

Figure 4.23. Block scheme for the joint kinematic control strategy

As can be seen from Fig. 4.23, a simple kinematic control strategy has been used to
perform the robotic arm movements. This control strategy can be applied because
most of the industrial manipulator arm already have some pre-installed low-level
controller for the dynamic control of the robot, i.e. controller for the dynamic
relations of the robot (velocity and torque). Thanks to this simplification, the
users can control the robot directly using its kinematic and differential kinematic
structures considering the low-level control loop of the robot as a simple integrator
(in Fig. 4.23 the integrator on the right).
This control loop has a very simple strategy, it is based on two principal compo-
nents: a feedforward component q̇d and a feedback component q. The first one is
derived directly from the trajectory reference thanks to the relation in 4.36 and is
characterized by the ideal reference that the end-effector has to track. While the
second component is extracted by the absolute encoders present on the robot motors
and it is necessary for the recovering of the possible initial and transient errors.
Also the initialization of the algorithm is important, indeed the qd(0) an q(0) values
should be previously initialized to have a small initial error to reduce the transient
time.

73

Chapter 5

Real prototypes

In this chapter different solutions for existing picking robot will be presented, see
section 5.1, and also some original prototype ideas will be proposed, see section 5.2.
The aim of this chapter is to give an idea of the state-of-the-art for the picking robot
currently available and present some new solutions which could complement the
existing ones.

5.1 Existing robots for picking tasks

There exists different solution and prototypes for autonomous picking robot and
some of them can be bought on the market. Anyway, the robot components and its
task performances are not always compatible with the specific task to perform. The
robot choice is always tricky and many variables must be considered.
For sake of completeness, the most known robot will be here introduced with a small
presentation.
One of the most famous autonomous picking robot is the Sweeper robot [74] which is
the result of an European project developed from different universities belonging to
Netherlands, Belgium, Israel and Sweden. This robot can move inside a greenhouse
over some rails and is able to recognize, reconstruct and pick sweet peppers.
Iron Ox [24] is an American hydroponic greenhouse which is fully automated, from
the seeding to the harvesting of the plants. This is the first start-up which has been
able to achieve this automation level marking the history for the agriculture future.
This company has been already selling its products in California since 2018 allowing
for a non-expensive and fresh products for the American population.
Rubion [54] is a strawberry picking robot developed by the Octinion company. It is
an interesting robot able to pick strawberries without bruising them, resulting in a
fresh crop. This robot is autonomous and can detect and monitoring the harvest
thanks to its sophisticated quality monitoring.

74 5. Real prototypes

Farmbot [23] is a very interesting open-source Cartesian robot which is able to
perform every single operation autonomously. It can seed the plants, waters and
monitoring them, removes weeds and perform other operation. This is possible
thanks to the exchangeable end-effector. There is also a useful application to monitor
the behaviors and to program the robot, but it is not suitable for very large crop
areas which is our case of interest. Anyway, this robot is really interesting for the
self-sufficiency and deserve to be cited.
Agrobot [4] is a company which creates harvesting and agricultural robot. Their
E-Series is composed by some big autonomous mobile configurable robot which
are able to detect and crop strawberries in different ways. Due to its size and the
different arms mounted on it, this robot is able to harvest lots of fruit in a small
period, but the size not always can be afforded into a narrow environment like the
greenhouses ones.
Root AI [5] is a very interesting company which creates autonomous harvesting
robots. A new solution of this company is the Virgo robot which is a tomato picking
robot characterized by a real-time detection algorithm, a gentle touch of the fruits,
an intelligent picking motion and a fast processing. This agency is building different
and innovative solutions for the agricultural future.
The Green Robot Machinery company is creating an autonomous robot for the cotton
harvesting [27] which is able to identify, approach and pick each cotton tuft. This
agency is currently developing also other solutions for horticulture crops.
FFrobotics [25] company is also creating harvesting robot for fruit picking, especially
for apples or citrus and other tree’s fruits. Their solution is interesting because
the machine gathers the fruit and store it temporarily inside a box attached to the
end-effector and then storage them in another bigger compartment which separates
them.
Meteomotion [51] is another interesting solution for tomatoes picking. it is composed
by a mobile platform, two robotic arms, two 3D cameras and an autonomous boxing
machine. This robot is built exactly for greenhouses picking tasks, is a multi-purpose
robot, i.e. not only for picking task, and, such as Sweeper robot, it has received
European funding for the development. It has been applied only on tomatoes
plantations, but it could probably applied to different ones.
The last solution presented is the Dogtooth [43] ones. This company is creating
interesting harvesting robots for soft fruit picking although the company is at its
origins. Some solutions for strawberries picking have been presented but different
works are still in progress.
The here-presented companies start from the same ideas, i.e. create an harvesting
robot, and then spread over different solutions for the different crops. Some of them

5.2 Prototype 75

could be also suitable for the zucchini flower picking task presented in this work;
only some modification should be performed in the recognition and picking tasks,
but the robot structure and its control are already quite stable. Anyway, a new
solution, the one presented through the thesis, is presented in 5.2 which could be
created with the composition of existing modules and other original ones i.e 3D
printed and assembled.

5.2 Prototype

In this section a prototype for the autonomous zucchini flower harvesting robot is
presented. The aim of this chapter is not to present the real construction of the
whole robot, but it is the presentation of different solutions which, ones assembled,
could create the robot. For the real construction of the robot, one of the presented
modules have to be chosen for each component and merged with the other ones
taking into account the differences of the parameters and the structures. Although
these solution are valid for a simulation of the project, in section ?? another solutions
built from zero will be used to simulate the whole process presented in the thesis
and to complete the work. The aim of the presentation of these multiple solutions
presentations is to give at the reader different modalities to achieve the same goal. In
this way, each user could choose the robot parts which best fits with their necessities.

5.2.1 Mobile Platform

The first robot module considered is the mobile platform; this carrier should be
characterized by three main features:

• The possibility of smooth behaviours with a low position error

• A good stability to not capsize when the robotic arm is moving and/or
stretching.

• The right support capacity to sustain the weight of the robotic arm, the
collecting boxes and all the other components (batteries, central units, ecc)

Once these three characteristics are met, the mobile platform can be chosen.
The first platform presented is the 4WD Mecanum Wheel Mobile Robotic Platform
produced by King Kong Robot[60], see Fig. 5.1. This platform is a four Mecanum
wheel mobile platform driven by four separated 12V DC motors with optical encoders
and it is comprehensive of a 12V battery and charger, four ultrasonic sensors (one
for each side), an IO expansion and an Arduino ATmega328. Its dimensions are

76 5. Real prototypes

really contained (400mm x 307mm x 123mm), but it is characterized by a good load
capacity (10kg) which is enough for the arm and the light-weght zucchini flowers.

Figure 5.1. 4WD Mecanum Wheel Mobile Robotic Platform produced by King Kong
Robot[60]

Another small solution could be the Light duty Mecanum wheel mobile platform
OMR10 presented by the Omni Mechanical Technology company [14], see Fig. 5.2.
This four Mecanum wheel robot can work for eight consecutive hours with a full
charged battery. The charging time is estimated approximately to be 4 hours. It
can be commanded through wireless communication, it can support 20kg of weight
and its dimensions (480mm x 450mm x 134mm) allow to perform the zucchini flower
picking task.

Figure 5.2. Light duty Mecanum wheel mobile platform OMR10 presented by the Omni
Mechanical Technology company [14]

The small dimensions of these two presented robots allows to perform zucchini
flower picking tasks for small greenhouses or at most medium ones otherwise a
multiple robots cooperation solution should be used to work in a big greenhouse and
each robot can either have an area assigned to work in, or they can cooperate in a

5.2 Prototype 77

distributed fashion to schedule the tasks and work area.
There exists also bigger platforms with different characteristics, but they are more
costly and in general they are too big to be used in a greenhouse, e.g. Mecanum
wheel mobile lift platform AGV–OMR06 of Omni Mechanical Technology company
[15].
The best choice for the mobile platform should be to build a Mecanum wheel robot
autonomously, choosing each component separately using an aluminum structure to
create a robotic carrier with the right dimensions and characteristics for a hydro-
ponic greenhouse. Obviously, this could be costly and time consuming but the best
industries which has adopted this solutions are the ones which are producing lots of
profits.
Anyway, some solutions which can be adopted in this task exists and one which fit
with this project is the Mobile Robot MPO-500 produced by Neobotix[50], see Fig.
5.3. The platform dimensions (986mm x 662mm x 409mm) are suitable for most
of the fruit and vegetables greenhouse productions, it is able to move freely for 7
hours or 3 km with a single charge, it has different localization sensors and different
optional features, e.g. the automatic charging station, are available. Moreover, can
be added some laser scanners and other features that could be useful in autonomous
greenhouses.

Figure 5.3. Mobile Robot MPO-500 produced by Neobotix[50]

5.2.2 Robotic arm

Regarding the robotic arm, different solutions are present on the market, but only
few of them will be presented because they cover the needed specifics for the arm.
The robotic arm considered is the Gen3 robotic arm produced by Kinova[38], see
Fig. 5.4a which is a good 6 DOF robotic arm with different characteristics and
accessories. This manipulator arm is a lightweight robot whit a payload of 2kg
for a completely stretched position or of 4kg for a middle-stretched position. The
zucchini flower weight is negligible compared to the payload of the robot, but this

78 5. Real prototypes

arm could be used also for different topics. This robot has a reach of 902mm
from its basis which is a good enough distance for our task. It has a maximum
speed of 50 cms and it is compatible with most of the operative systems and pro-
gramming languages. There exists also a light configuration of the robot, see Fig.
5.4b, which is more lightweight, has a minor reach region (706mm) and can lift
objects which are lighter, i.e. 0.5kg. Moreover, the Gen3 configuration provide a
depth camera as the one presented in section 4.3.1 which can be positioned exactly
on the last joint of the robot close to the end-effector, i.e. it is an eye-in-hand camera.

(a) Gen3 robotic arm produced by
Kinova[38]

(b) Gen3Light robotic arm
produced by Kinova[38]

Figure 5.4. Kinova 6 DOF Robotic arms

5.2.3 Vision camera

The vision camera, as explained in 4.3.1, is an RGB-D camera. This kind of cameras
should be lightweight and high resolution to perform perfectly the assigned task.
The Kinova company chosen for the robotic arm, see section 5.2.2, provides an
RGB-D camera which can be mounted on the robot end-effector and the camera
output can be read directly using the connectors of the robotic arm. This solution
is very useful for the project because otherwise another solution less elegant should
be used e.g. connect a Kinect camera [86] or similar to the end-effector and, if it is
not possible to pass the cables inside the robot structure, them should be tied on
the external shield of the robot, resulting in a inelegant and dangerous situation.

5.2 Prototype 79

(a) Kinova RGB-D camera mounted on the
end effector of the Gen3 robot

Figure 5.5. Kinova RGB-D camera mounted on the end effector of the Gen3 robot

5.2.4 Others

There are also other components which should be chosen to build the real prototype
of the robot:

• the battery

• the box used to collect the flowers

• the control units

• the electronics

• the charging station and charging mode

All these components are equally important for the whole project and without them
a real prototype could not be assembled, but in this work, they are not considered
due to the simulative nature of the project.

81

Chapter 6

Simulation

To verify and demonstrate the functionalities and the effective feasibility of this
project, a simulation, which use most of the main concepts presented, has been
developed. For the simulation, two main different tools have been used: Matlab [84]
and Coppelia Sim [2]. The first one has been used as the main controller of robot,
in fact, all the controllers and machine learning algorithms have been developed
in Matlab, see section 6.1. Instead, Coppelia Sim, also known as Vrep, see section
6.2, represent the real simulation environment where the robot prototype and the
greenhouse have been developed and simulated. Another program used is Thinkercad
[85], which is an online CAD used to develop some more peculiar 3D model for the
simulation like the flower 3D model used. The other models, i.e. the robotic arm
and the mobile platform, have been developed directly on Vrep with the software
standard tools.
The communication between the two software, Matlab and Vrep, has been performed
with the Remote Api files developed by Coppelia Robotics [2]. These files allow to
open a synchronous or asynchronous server communication between the two software
and it provides different type of operative mode for the data communication and
some pre-built functions [3] which are very useful for the programming.

6.1 Matlab

As previously introduced, Matlab is the main core of the simulation. With Matlab,
most of the simulation computations and controllers has been designed. Indeed, the
main algorithm presented in chapter 2 has been implemented on this tool. The main
algorithm parts developed with Matlab are the following:

• mobile arm kinematics computation
Both kinematics and differential kinematics are computed with Matlab by

82 6. Simulation

using the Denavit-Hartemberg convention, see sections 4.1.1 and 4.1.3, and
derivations.

• Mobile arm controllers
Two kind of controllers have been used for the simulation: a PID controller
performed over the joint position when the final joint position is already
known a priori e.g. for the home position or the flower release position, and
a Kinematic controller4.4.2 for the regulation of the robot joints during the
picking task where only the final position and orientation is known. The
kinematic controller has been defined in the Cartesian space and has been
built in such a way to regulate the final position of the end-effector over the
center of the flower stem and its orientation in such a way that the gripper
pliers are parallel to the stem.

• Flower recognition
This task is the first visual task performed by the robot and is needed to
identify if on the current plant visited there are some ready flowers to be
picked, see appendix B. In this way, the robot decides whether approach or
not the plant using only RGB image information.

• Approaching movement
The approaching movement is needed to move the robot closer to the plant or
to return the robot over the main trajectory. The main trajectories followed
by the mobile platform are generally centered over some catwalks positioned
on the soil. In this way the possibility of collision between the robot and the
environment is minimized and the robot do not cross the catwalk.

• Flower segmentation
This is the second Visual task of the algorithm, see appendix C. It is a
completion of the previous visual algorithm; indeed, this algorithm is an
extension of the previous one and it can recognize the flower stems, divide
them on the image and assign to each of them a border and a centroid. The
centroids, which are the (x, y) position on the image plane of the flowers center,
are then listed and returned to the main algorithm. The number of the centroid
also represents the number of flowers present on the plant; in fact, this number
is used to iterate the picking task for each flower.

• Flower localization
Thanks to the centroids list and using the depth camera information the robot
can identify the flower position with respect to the robot and, using some
homogenous transformation, it can find the position of the flower both with

6.1 Matlab 83

respect to the world reference frame and end-effector reference frame. This
algorithm has been proven to work with real applications, but some problem
arises when it is used on simulations for different aspects. First, a simulated
camera is not equal to a real one, it does not have any real sensor or a focal
length and therefore the localization formulas presented in section 4.3.4 cannot
be used. Moreover, the sensors used on Vrep are proved to be very noisy, indeed
most of the times the computed depth from the camera to the centroids was
wrong. For these reasons and other technical ones, the position and orientation
information has been extracted directly from the simulator which provides
some pre-defined functions for the localization of the scene objects.

• Gripper control
The gripper control has been developed both on Matlab and the simulation
tool. Matlab has the role of commanding to the simulation whether the gripper
must be closed or not. The command is coded with a Boolean signal which is
exchanged with Vrep that performs the real controller on the gripper using a
Threaded Childscript.

• Mobile platform movement along trajectories
This task, like the previous one, is only commanded by Matlab but the real
controller has been developed with a Threaded Childscript in Vrep. Matlab
decides through which plant the robot must move and command the start
of different trajectories developed on Vrep which are then followed by the
platform controller.

• Others
There are others many smaller tasks performed on Matlab e.g. the manipulation
of the flower dynamic, but their purposes regard more the appearance of the
simulation than its real realization. For this reason, they Will be not reported
on this thesis.

There are also some cross-functions which have been developed on Vrep, but
they are used directly on Matlab. This has been done because of the Remote Api
lack of functionalities in Matlab with respect to Vrep. In practice, some functions
have been developed using the Lua programming language over the Vrep tool but
are then used in Matlab thanks to a Remote API function which allows to run Vrep
functions directly on Matlab. In this way, the Remote Api can be enhanced with
the Vrep once and its function holes can be filled.

84 6. Simulation

6.2 Vrep

Vrep is the real simulator where the simulation has been performed. Before reporting
the functionalities and the development performed on this tool it is important to
introduce the built environment.

6.2.1 Simulation Environment

Using the pre-built models which Vrep offers, a small simulated hydroponic green-
house environment has been developed, see Fig. 6.1. This environment is composed
by two main areas: the real greenhouse, which is the real useful part for the sim-
ulation, and the packaging area which has been introduced only to improve the
aesthetic appearance of the simulation adding a pictorial touch to it. These two
areas have been divided with some transparent panels to visually separate the real
simulation area, i.e. the greenhouse, from the unused one, i.e. the packaging area.

Figure 6.1. Representation of the environment used in the simulation

Starting from the second one it is composed by three synchronized conveyors belt
upon which there is a flower-filled box which follows the belts till the final position
near a person which are controlling the other flower boxes before the shipping.
Instead, the greenhouse is composed by the robot, the catwalks over which the robot
can move, the paths that the robot mobile platform can follow and the plants over
which the flower that the robot must pick are positioned. The flower 3D model,
see Fig. 6.2, has been created with Thinkercad [85] a simple online CAD software
developed by Autodesk which allows to create more complicated shapes with respect
to Vrep which offers only primitive shapes.

6.2 Vrep 85

Figure 6.2. Flower 3D CAD model

6.2.2 Robot assembling

The robot used in this simulation has been realized directly on Vrep using different
primitive shapes, force sensors for the connections and joints. Using these pre-built
objects two Vrep model has been created: the mobile platform model and the Robotic
Arm one.

Mobile Platform

(a) Mecanun car model image (b) Tree structure of the
Mecanum car model

Figure 6.3. Mecanum Car Model

Fig. 6.3a represents the Mecanum car model developed in Vrep. It is composed by
(see Fig. 6.3b) a rectangular shape representing the case of the robot, four Mecanum

86 6. Simulation

wheels, a collection box and a force sensor where the robotic arm will be attached.
The model is simple and the aesthetic aspect has been considered only in part. The
distance between the wheels has a crucial importance in this model because in this
way the slipping behaviors of the wheels are minimize. Indeed, the robot can turn
around its center without slipping. except for this foresight, the model has been
developed as presented in section 3.1.1.

Robotic Arm

(a) Robotic Arm
model image

(b) Tree structure of the Robotic Arm
model

Figure 6.4. Robotic Arm model

Also the Robotic Arm model, see Fig. 6.4a, has been developed following the
descriptions presented in section 4.1. In fact, the joint initial position and orientation
has been decided to fit perfectly with the presented kinematics. To prove that the
simulated robotic arm is represented exactly from the kinematics developed, different
simulations have been performed using the forward kinematics. These simulations
have proved that the robotic arm is well structured because the norm of the 3D
position error was always under 1cm.
The model, see Fig. 6.4b, is composed by different cylindrical visual parts, six joints,
different connector shapes and a force sensor for the end-effector connection. The
kinematic structure of this robot is not realizable because some joints centers are
superimposed and this is not always possible in the reality, but using some foresight,
different companies have developed 6Dof robotics arm very similar to this one by
performing only slight changes on the forward kinematics here presented.
To the robotic arm model have been then added also a gripper, namely the Baxter

6.2 Vrep 87

Gripper which is a pre-built gripper model offered in Vrep by Rethink Robotics,
see Fig. 6.5a, and the Kinect Camera, see Fig. 6.5b, which represents the RGB-D
camera, offered by Lyall Randell and slightly modified by Nicola Piccinelli.

(a) Baxter Gripper - Robotic Arm end-effector

(b) Kinect Camera - Robotic Arm RGB-D
camera

Figure 6.5. Other accessories of the Robotic Arms

6.2.3 functionalities

Except for the simulation environment, the main functionalities of Vrep are essentially
three:

• the trajectory creation for the robotic platform

• the robotic platform trajectory following controller

• the gripper controller

The first one, the trajectory creation, has been performed using the path model
of Vrep. These paths can be modeled and rearranged to fit the necessity of the
programmer. The trajectories are created by assigning a speed profile to a dummy
object which is constrained to follow the path to which it is assigned, using a given
speed profile. These trajectories are coordinated from Matlab which by sending
some signals to Vrep can start some specific trajectories depending on the task that

88 6. Simulation

the robot must perform.
The second functionality is the trajectory following of the robot. The mobile platform
controller has been constructed similarly to the one presented in section 3.3.3, but
the position and orientation regulation has been separated. This has been done
because the robot moves on parallel or perpendicular path constrained from the
structure of the greenhouse and then the robot do not need to regulate also the
angle during the trajectory, also because the platform is an omni-directional car
and a slight error in orientation does not reflect over the error in position. Thus,
the controller used is only a position controller which follows the dummy trajectory
explained in the previous point. When the current trajectory is completed the robot
autonomously extract the orientation of the next path to be followed and regulate
its angle according to that. This controller is valid also for non-perpendicular path
and also for curvilinear path, but in the latter case, the position and the orientation
of the robot are not performed simultaneously and this could result in a bad looking
movement e.g. the tangent velocity of the robot is not parallel with the Mecanum
car direction. Despite this, for this simulation, this controller works pretty well
and it can follow different speed profiles trajectories without any problem. The
last functionality is the gripper controller which is a simple PID controller which
regulates the joint speed of the gripper pliers. In this way, by sending a Boolean
signal from Matlab which represent the open/close signal, the controller can either
open or close the pliers.
There are also other functionalities implemented in Vrep such as the coordination
between the conveyors belt used to transport a flower-filled collecting box from the
robot docking station to the storage station and other functions which are used
directly from Matlab to simplify some computations.

6.3 Simulation results

The simulation works well and generally the robot can collect all the flowers present
on the scene even if sometimes happens that the robot does not gather appropriately
the flower. The robot takes around 4 minutes to complete the simulation controlling
all the plants present in the environment and returning to its docking station. The
robot takes less than 25 seconds to pick a flower and in some cases even less. Also,
the Machine learning flower recognition algorithms are very fast. furthermore, in this
simulation all the robot actions have been separated to highlight each of them, but
some movements could be performed simultaneously e.g. the approaching movement
could be performed at the same time of the robotic arm motions. In this way the
simulation time can be even more decreased, but the dynamics behaviors must be

6.3 Simulation results 89

considered to ensure that the robot does not flip during these movements.

91

Chapter 7

Conclusions

In conclusion, in this project, an ideal implementation and different real solution to
the same problem have been analyzed, i.e. zucchini flower picking in a hydroponic
greenhouses. The different robot versions presented are all applicable in a real
agriculture 4.0 scenario where a farmer wants to use a robot to pick some fruits
from some plants. Also, some real modules have been presented and they are all
applicable in the reality by assembling the different structures chosen. To prove the
efficiency and the real applicability of this project a simulation has been performed
by building an ideal robot and using the algorithms developed during the thesis.

7.1 future improvements

Regarding the future improvements, many modifications can be applied. My idea
of autonomous harvesting robot or even better autonomous greenhouse is to build
an environment self-sufficient in almost all the tasks. The human labor should be
reduced consistently, especially for arduous tasks. Under this view an autonomous
greenhouse should cover different aspects and the robots working in them should
perform different tasks, even more than gathering fruits. Ones this idea has been
introduced, some of the possible future improvements can be analyzed.
One of the simplest tasks that the picking robot analyzed do not have is the
charging/discharging of the boxes containing the harvested fruit. This simple task
generally is performed by a human being which takes the boxes and move them on
some packaging machine. This task could be performed either directly with the
autonomous picking robot or using other solutions.
Other improvements could be applied at the localization and obstacle avoidance algo-
rithm for the mobile platform, not only to improve its movements in the greenhouse,
but also for a movement optimization in the case of cooperative robots. Indeed, the
communication between different robot cooperating into the greenhouse is essential

92 7. Conclusions

both for costs and profits maximization. These kind of distributed robot systems
could allow to build a greenhouse completely autonomous [24] which is able to put
on the market low costs fresh fruits and vegetables.
An important thing which is not always considered, is the possibility that the robot
works into a varied environment, i.e. an environment where different types of plants
are present. Nowadays, It is known that the companion planting, i.e. to collocate
different plants in the same environment, allows the agricultural companies to save
money for pesticides and insecticides resulting in a more biological, fresh and strong
plantation. If the robot is able to work with a various environment, classify the
different fruits and plants and it is able to recognize and prevents diseases, insects’
infestations and fungal infections, the harvest could be maximized under every
aspects: freshness, variegation, quality and last but not least in savings.
Another interesting improvements could be the introduction of a multi-purpose
end-effector [23] to perform different tasks with the same robot. An exchangeable
end-effector could be useful because the robot could be able to perform the different
tasks which a normal human should perform, e.g. pruning, picking, monitoring
and others. In this way, a single robot can perform the different tasks needed and
the company can save space, money resulting another time in a more consistent
environment.
Also, the image segmentation can be improved with the use of neural network. With
this machine learning technique, it is possible to classify many different things: fruits,
stems, branches, disease, insects and so on. In this way, the robot could recognize
different plants parts, different fruits, different problems, and it could be able not
only to report them to the farmer but also to intervene. There exists already some
solution for this problem, but lots of improvements are still needed.
Regarding the robot regulation, it can be performed with more sophisticated and
efficient methods like the visual control technique which allows the robot not only
to perfectly follow a trajectory in the space, but also, to perform an online obstacle
avoidance which can be essential in some cases.
A dynamic model of the manipulator arm can be derived to use it in the control
loop. In this way, a low-level dynamic controller can be computed and the robot
movements should result in a smoother behavior and more efficient tracking or
regulation. The improvement here presented are only few of the ones that the future
is facing us but the engineer specializations and the continuous increasing interests
in this field will allow us to be ready to deal with them in the right way.

93

Appendix A

Euler Angles

The following appendix is based on [68] and [70].
A rotation matrix which belong from the SO(3) group, i.e. Special Orthonormal
group for R3 space, is composed by nine entries. A minimal representation for a
tri-dimensional space is composed by three parameters, in general for an SO(n)
space the minimal representation is composed by n(n−1)

2 . Therefore, the rotation
matrix is a redundant representation, indeed the additional six parameters of the
rotation matrix are needed to maintain the orthogonality of the matrix.
The minimal representation for the rotations in the R3 space is composed by three
angles Φ = [φ θ ψ]T . each of these angles represents a simple rotation around one
of the three axis. In fact, by composing three elementary rotation around three
consequently non-parallel axis, it is possible to obtain any general rotation matrix
in the three dimensional space.
These angles represent a group of rotational angels called Euler Angles and there
exists twelve different possibilities for the choice of these angles. One of the most
used is the ZYZ Euler Angles rotation which is introduced in the next section A.1.

A.1 ZYZ angles

As just said, the ZYZ angles is one of the most common group of the Euler angles
used. This rotation is composed by three elementary rotations around the current
reference frame:

• a rotation of φ around the z axis of the base reference frame

• a rotation of θ around the y′ axis of the new reference frame obtained from
the first rotation

• a rotation of ψ around the z′′ axis of the last reference frame obtained with
the second rotation

94 A. Euler Angles

As it is clear from the above list, the angles are expressed with respect to the current
reference frame and not to a fixed one. This means that, once a rotation around
an axis has been performed, then the next rotation is around the axis of the new
reference frame found.
In practice, a rotation matrix of this form has been created:

R(Φ) = Rz(φ)Ry′(θ)Rz”(ψ) =


cφcθcψ − sφsψ cφcθsψ − sφcψ cφsθ

sφcθcψ − cφsψ sφcθsψ − cφcψ sφsθ

−sθcψ sθsψ cθ

 (A.1)

But one of the most important uses for this angles is the inverse solution, which
allows to find a group of three angle starting from a given rotation matrix.

R =


raa rab rac

rba rbb rbc

rca rcb rcc

 (A.2)

Comparing A.2 with A.1 and assuming that rac and rbc are different from zero it is
possible to define the following inverse relations

φ = Atan2(rbc, rac) (A.3)

θ = Atan2(
√
r2
ac + r2

bc, rcc) (A.4)

ψ = Atan2(rcb,−rca) (A.5)

This solution is valid for any values of θ ∈ (0, π); indeed, another solution for the
interval (−π, 0) is given by

φ = Atan2(−rbc,−rac) (A.6)

θ = Atan2(−
√
r2
ac + r2

bc, rcc) (A.7)

ψ = Atan2(−rcb, rca) (A.8)

Note that if θ = {0, π} then the rotation φ and ψ is constrained around the same
axis and do not cover all the three dimensional space. This case is called a singularity
for the Euler Angles.

95

Appendix B

K-mean algorithm

The K-mean algorithm is a technique used to find some clusters with similar charac-
teristics into a given unsupervised dataset. This algorithm is the non-probabilistic
limitation of another algorithm, known as Expectation-Maximization (E-M) algo-
rithm, which instead works with mixtures of Gaussian distribution. A full treatment
of this algorithm can be found in [10] while here a small and simple explanation will
be reported.
This algorithm is an unsupervised learning algorithm. These kinds of algorithms
are characterized by a dataset of information in input which is uncorrelated with
a target dataset. Indeed, differently from the supervised learning where the input
dataset is composed by two subsets, one for the instances and one for their classes
or function output, the unsupervised learning works with a singular set of instances
which are initially considered equally. This is the reason why these algorithms are
generally used to find some clusters of instances which have similar behaviors or
information, to obtain a first rough classification of the dataset. For our purposes,
the various information of the different clusters are not needed but the separation of
them is necessary to perfectly separate the flowers from the image.
Returning to the algorithm it works in a really simple but smart way:

1. The algorithm is initialized with the dataset information, an image in our case,
and the number K of wanted clusters. Moreover, K randomly centroids, in
our case RGB color means, are initialized.

2. Using the current centroids, the algorithm assigns to them each nearest instance
creating in this way K clusters near that instance. In our case the instance
are the pixel colors and if their similar or their values are close to the centroid
ones then it assigns that pixel to the centroid.
Then once that the assignment is completed, recompute the centroids of the
new clusters by taking their mean color values.

96 B. K-mean algorithm

3. now, the algorithm takes each instance in the clusters and it recomputes the
distance from the new found centroids. If there are some instances which are
nearest to a centroid which is not the one of their belonging cluster, then move
that instance in the cluster associated to that centroid. Then, once all the new
assignments are finished recompute all the centroids.

4. Repeat step 3. until convergence is met, which means that no new assignment
are performed between the clusters.

Although this algorithm is simple, it works well for our necessity. The convergence
can be assured if for each iteration the mean distance of the instances from their
centroid is decreased and if the dataset has only finite possible partitions.
Some contraries are that the number K of clusters has to be decided in the initial-
ization before that the iterative part of the algorithm starts and, as can be seen
in section 4.3.2, this could create some problems. This algorithm is also sensitive
to initial conditions if the data of the image are not enough. The problem is that
depending on the initialization, the algorithm could encounter some local minimum
which stops the algorithm in an unwanted situation. This problem can be crossed
by doing different attempts with different centroids initialization and comparing
the solution to assure their equality. The algorithm is no robust to outliers, which
means that if there are in the image some instances which are really far from every
centroids, they modify the mean in a malicious way. Think for example to a red
object into our picture, it could move the yellow/orange centroid far to the one
which we are looking for.

B.1 K-mean image segmentation algorithm

In this section, the algorithm used to achieve the image segmentation is reported.
The aim of this algorithm is to divide an image into clusters and extract the zucchini
flowers cluster from them. This is useful to know if some zucchini flowers are present
or not on a specific plant. It is important to stress that on Matlab the XY Z space
is called Lab space where L, which represents Y , is the brightness, a which is X
represents the blue wavelengths and b that is Z constitutes the other wavelengths
[46].

Listing B.1. K-mean image segmentation algorithm
1 % clear all the variables and figures

2 clc; clear all; close all;

3 % Load the image for the segmantation

4 zucc = imread('zucc.jpg'); imshow(zucc);

5
6 % move the image from the RGB space to the CIE XYZ (Lab) one and extract the

B.1 K-mean image segmentation algorithm 97

7 % color plane

8 xyz_zucc = rgb2lab(zucc);

9 xz = xyz_zucc(:,:,2:3);

10 xz = im2single(xz);

11
12 % number of different colors to be extracted. It characterize the number of

13 % the final clusters

14 n_Clusters = 3;

15
16 % k−mean segmantation

17 pixel_labels = imsegkmeans(xz,n_Clusters,'NumAttempt',3);

18
19 % shows the clusters labelled with different grays colors

20 figure

21 imshow(pixel_labels,[])

22
23 % use different masks to extract form the original image the clusters found.

24 mask1 = pixel_labels==1;

25 cluster1 = zucc .* uint8(mask1);

26 figure

27 imshow(cluster1)

28
29 mask2 = pixel_labels==2;

30 cluster2 = zucc .* uint8(mask2);

31 figure

32 imshow(cluster2)

33
34 mask3 = pixel_labels==3;

35 cluster3 = zucc .* uint8(mask3);

36 figure

37 imshow(cluster3)

38
39 clusters={cluster1 cluster2 cluster3};

40 masks={mask1 mask2 mask3};

41
42 % find the flower cluster

43 for i=1:n_Clusters

44 cluster=clusters{i};

45 mask=masks{i};

46
47 redChannel = cluster(:, :, 1);

48 greenChannel = cluster(:, :, 2);

49 blueChannel = cluster(:, :, 3);

50
51 meanR = mean(redChannel(mask));

52 meanG = mean(greenChannel(mask));

53 meanB = mean(blueChannel(mask));

54
55 fprintf('meanR: %3.f meanG:%3.f meanB: %3.f\n',meanR,meanG,meanB)

56 if (meanR>210 && meanG>160 && meanG<240 && meanB<80)

57 flowerCluster=cluster;

58 end

59 end

99

Appendix C

Flower separation algorithm

In this appendix, the flower separation algorithm is presented, see algorithm C [47].
The algorithm starts with the loading of the image which represents the flower
cluster. This image is then converted in a gray scale image and then binarized to
have a black and white image bw. The bw image is then filtered to attenuate some
noises present in it by deleting all that group of pixels which are under some range.
After this, two filling operation are present. The first one, rows 23-24, fill the holes
which can be contained in a circular shape of a chosen radius, while the second
one, row 29, fill all the holes contained in a closed boundary. The first one is useful
when the flowers are behind some objects or the image contain some noise which
results in a not well represented flower, while the second one is used to obtain a flat
surface representing the flowers with no holes inside of it. The rest of the algorithm
divides the flat separated surfaces and labels them with different numbers using the
Moore-Neighbor tracing algorithm modified by Jacob’s stopping criteria, row 35,
and then compute the centroids of the separated flowers and store them in an array,
rows 48-49. The other instructions are needed to print the images on screen to have
a representation of the algorithm functionalities.

Listing C.1. Flower image separation algorithm
1
2 %Starting from the flowers cluster extracted from the original

3 %figure using the k−mean algorithm, here a flower separation algorithm is presented

4
5 %load the cluster image

6 cluster = imread('flowercluster.png');

7 imshow(cluster);

8
9 %image binarization

10 grayIm = rgb2gray(cluster);

11 bw = imbinarize(grayIm);

12 figure

13 imshow(bw)

100 C. Flower separation algorithm

14
15 %noise attenuation

16 bw = bwareaopen(bw,20);

17 figure;

18 imshow(bw);

19
20 %fill the image void spaces by finding circles in the images

21 %the radius is set to 0 so this function is not used

22 %it is useful for very noisy images.

23 fill = strel('disk',0);

24 bw = imclose(bw,fill);

25 figure

26 imshow(bw)

27
28 %fill all the closed boundaries

29 bw = imfill(bw,'holes');

30 figure;

31 imshow(bw);

32
33 %find the boundaries of the non empty figures and separate the differen surfaces

34 %(B boundary functions, L labeled image)

35 [B,L] = bwboundaries(bw,'noholes');

36
37 % plot the image with different colors and highlight the boundaries

38 figure

39 imshow(label2rgb(L,@jet,[.5 .5 .5]))

40 hold on

41 for k = 1:length(B)

42 boundary = B{k};

43 plot(boundary(:,2),boundary(:,1),'w','LineWidth',1)

44 end

45
46 %extract the centroids from the labeled image and plot on the previous

47 %image

48 s = regionprops(L,'centroid');

49 centroids = cat(1,s.Centroid);

50 plot(centroids(:,1),centroids(:,2),'r*')

51
52 % number of flower present in the image. it is equal to k

53 Numberflowers = length(centroids);

54
55 %print of the original flower with the respective centroids in different figures.

56 for i = 1:Numberflowers

57 clust = L==i;

58 cluster = zucc .* uint8(clust);

59 figure

60 imshow(cluster);

61 hold on

62 plot(centroids(i,1),centroids(i,2),'r*')

63 end

101

Bibliography

[1] Norsuryani Zainal Abidin, Nurul Ain Mohamed, Zainah Md Zain, Maziyah Mat
Noh, Norhafizah Md Zain, and Dwi Pebrianti. Backstepping control of non-
holonomic car-like mobile robot in chained form. In Proceedings of the 10th
National Technical Seminar on Underwater System Technology 2018, pages
173–180. Springer, 2019.

[2] Coppelia Robotics AG. Coppelia sim - vrep. https://www.coppeliarobotics.

com/.

[3] Coppelia Robotics AG. Remote api functions for matlab to comunicate
with coppelia sim. https://www.coppeliarobotics.com/helpFiles/en/

remoteApiFunctionsMatlab.htm.

[4] Agrobot. Agrobot picking robots. https://www.agrobot.com/.

[5] Root AI. Root ai farming robot. https://root-ai.com/.

[6] Abdullah Akay and Yusuf Sinan Akgul. 3d reconstruction with mirrors and
rgb-d cameras. In 2014 International Conference on Computer Vision Theory
and Applications (VISAPP), volume 3, pages 325–334. IEEE, 2014.

[7] Dario Albani, Joris IJsselmuiden, Ramon Haken, and Vito Trianni. Monitoring
and mapping with robot swarms for agricultural applications. In 2017 14th IEEE
International Conference on Advanced Video and Signal Based Surveillance
(AVSS), pages 1–6. IEEE, 2017.

[8] CW Bac, Jochen Hemming, and EJ Van Henten. Robust pixel-based classi-
fication of obstacles for robotic harvesting of sweet-pepper. Computers and
electronics in agriculture, 96:148–162, 2013.

[9] Luca Bascetta, Marco Baur, and Giambattista Gruosso. Robi’: A prototype
mobile manipulator for agricultural applications. Electronics, 6(2):39, 2017.

[10] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/
https://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsMatlab.htm
https://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsMatlab.htm
https://www.agrobot.com/
https://root-ai.com/

102 Bibliography

[11] Timo Blender, Thiemo Buchner, Benjamin Fernandez, Benno Pichlmaier, and
Christian Schlegel. Managing a mobile agricultural robot swarm for a seed-
ing task. In IECON 2016-42nd Annual Conference of the IEEE Industrial
Electronics Society, pages 6879–6886. IEEE, 2016.

[12] Robert Bohlin and Lydia E Kavraki. Path planning using lazy prm. In
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),
volume 1, pages 521–528. IEEE, 2000.

[13] Yi-Chich Chiu, Suming Chen, and Jia-Feng Lin. Study of an autonomous fruit
picking robot system in greenhouses. Engineering in agriculture, environment
and food, 6(3):92–98, 2013.

[14] Omni Mechanical Technology Co. Light duty mecanum wheel mobile platform
omr10. http://www.omrobot.com/en/product/mecanum-wheel-robot.html.

[15] Omni Mechanical Technology Co. Mecanum wheel mobile lift platform agv–
omr06. http://www.omrobot.com/en/product/Mecanum-Wheel-AGV.html.

[16] Peter I Corke. Visual control of robot manipulators–a review. In Visual Servoing:
Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback,
pages 1–31. World Scientific, 1993.

[17] Xin Dong, Mehmet C Vuran, and Suat Irmak. Autonomous precision agriculture
through integration of wireless underground sensor networks with center pivot
irrigation systems. Ad Hoc Networks, 11(7):1975–1987, 2013.

[18] Tom Duckett, Simon Pearson, Simon Blackmore, Bruce Grieve, Wen-Hua Chen,
Grzegorz Cielniak, Jason Cleaversmith, Jian Dai, Steve Davis, Charles Fox,
et al. Agricultural robotics: the future of robotic agriculture. arXiv preprint
arXiv:1806.06762, 2018.

[19] Halil Durmuş, Ece Olcay Güneş, Mürvet Kırcı, and Burak Berk Üstündağ. The
design of general purpose autonomous agricultural mobile-robot:“agrobot”.
In 2015 Fourth International Conference on Agro-Geoinformatics (Agro-
geoinformatics), pages 49–53. IEEE, 2015.

[20] Puwadol Oak Dusadeerungsikul and Shimon Y Nof. A collaborative control
protocol for agricultural robot routing with online adaptation. Computers &
Industrial Engineering, 135:456–466, 2019.

http://www.omrobot.com/en/product/mecanum-wheel-robot.html
http://www.omrobot.com/en/product/Mecanum-Wheel-AGV.html

Bibliography 103

[21] AH Amer Eissa, AA Abdel Khalik, and AA Abdel. Understanding color image
processing by machine vision for biological materials. Structure and Function
of Food Engineering, pages 227–274, 2012.

[22] Gopi Krishna Erabati. 3d object recognition and relative localization using a
3d sensor embedded on a mobile robot, 2020.

[23] Farmbot. Farmbot open-source cartesian autonomous robot. https://farm.

bot/.

[24] Robot farming startup Iron Ox. Iron ox autonomous farming robots. https:

//ironox.com/.

[25] FFrobotics. Ffrobotics harvesting robots. https://www.ffrobotics.com/.

[26] Spyros Fountas, Nikos Mylonas, Ioannis Malounas, Efthymios Rodias, Christoph
Hellmann Santos, and Erik Pekkeriet. Agricultural robotics for field operations.
Sensors, 20(9):2672, 2020.

[27] Kadeghe G Fue, Wesley M Porter, Edward M Barnes, and Glen C Rains. An
extensive review of mobile agricultural robotics for field operations: Focus on
cotton harvesting. AgriEngineering, 2(1):150–174, 2020.

[28] Zhenqing Gao, Yuanxin Yang, Yanping Du, Yuan Zhang, and Zhaohua
Wang. Kinematic modeling and trajectory tracking control of a wheeled omni-
directional mobile logistics platform. DEStech Transactions on Engineering and
Technology Research, 2017.

[29] Yuanyue Ge, Ya Xiong, and Pål J From. Symmetry-based 3d shape completion
for fruit localisation for harvesting robots. Biosystems Engineering, 197:188–202,
2020.

[30] Yuanyue Ge, Ya Xiong, Gabriel Lins Tenorio, and Pål Johan From. Fruit
localization and environment perception for strawberry harvesting robots. IEEE
Access, 7:147642–147652, 2019.

[31] R González, F Rodríguez, J Sánchez-Hermosilla, and JG Donaire. Navigation
techniques for mobile robots in greenhouses. Applied Engineering in Agriculture,
25(2):153–165, 2009.

[32] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer
vision. Cambridge university press, 2003.

https://farm.bot/
https://farm.bot/
https://ironox.com/
https://ironox.com/
https://www.ffrobotics.com/

104 Bibliography

[33] Masood Ul Hassan, Mukhtar Ullah, and Jamshed Iqbal. Towards autonomy
in agriculture: Design and prototyping of a robotic vehicle with seed selector.
In 2016 2nd International Conference on Robotics and Artificial Intelligence
(ICRAI), pages 37–44. IEEE, 2016.

[34] IEEE. Ieee xplorer web for documentation. https://ieeexplore.ieee.org/

Xplore/home.jsp.

[35] PVS Jayakrishna, M Suryavamsi Reddy, N Jaswanth Sai, N Susheel, and
KP Peeyush. Autonomous seed sowing agricultural robot. In 2018 Interna-
tional Conference on Advances in Computing, Communications and Informatics
(ICACCI), pages 2332–2336. IEEE, 2018.

[36] Panagiotis Katsigiannis, Lazaros Misopolinos, Vasilis Liakopoulos, Thomas K
Alexandridis, and George Zalidis. An autonomous multi-sensor uav system for
reduced-input precision agriculture applications. In 2016 24th Mediterranean
Conference on Control and Automation (MED), pages 60–64. IEEE, 2016.

[37] Nazmuzzaman Khan, Gregory Medlock, Scott Graves, and Sohel Anwar. Gps
guided autonomous navigation of a small agricultural robot with automated
fertilizing system. Technical report, SAE Technical Paper, 2018.

[38] Kinova. Gen3 robotic arm produced by kinova. https://www.kinovarobotics.

com/en/products/gen3-robot.

[39] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to
single-query path planning. In Proceedings 2000 ICRA. Millennium Confer-
ence. IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No. 00CH37065), volume 2, pages 995–1001. IEEE, 2000.

[40] Keerthy Kusumam, Tomáš Krajník, Simon Pearson, Tom Duckett, and Grzegorz
Cielniak. 3d-vision based detection, localization, and sizing of broccoli heads in
the field. Journal of Field Robotics, 34(8):1505–1518, 2017.

[41] Shipeng Li, Di Li, Chunhua Zhang, Jiafu Wan, and Mingyou Xie. Rgb-d image
processing algorithm for target recognition and pose estimation of visual servo
system. Sensors, 20(2):430, 2020.

[42] Yunwang Li, Sumei Dai, Yuwei Zheng, Feng Tian, and Xucong Yan. Modeling
and kinematics simulation of a mecanum wheel platform in recurdyn. Journal
of Robotics, 2018, 2018.

[43] Dogtooth Technologies Limited. Dogtooth picking robots. https://dogtooth.

tech/.

https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.kinovarobotics.com/en/products/gen3-robot
https://www.kinovarobotics.com/en/products/gen3-robot
https://dogtooth.tech/
https://dogtooth.tech/

Bibliography 105

[44] Guichao Lin, Yunchao Tang, Xiangjun Zou, Juntao Xiong, and Jinhui Li. Guava
detection and pose estimation using a low-cost rgb-d sensor in the field. Sensors,
19(2):428, 2019.

[45] Nathan Lovell and Vladimir Estivill-Castro. Color classification and object
recognition for robot soccer under variable illumination. In Robotic Soccer.
Citeseer, 2007.

[46] MathWorks. Color-based segmentation using k-means
clustering. https://it.mathworks.com/help/images/

color-based-segmentation-using-k-means-clustering.html.

[47] MathWorks. Identification of closed areas. https://it.mathworks.com/help/

images/identifying-round-objects.html.

[48] Eka Maulana, M Aziz Muslim, and Veri Hendrayawan. Inverse kinematic
implementation of four-wheels mecanum drive mobile robot using stepper motors.
In 2015 International Seminar on Intelligent Technology and Its Applications
(ISITIA), pages 51–56. IEEE, 2015.

[49] Neha S Naik, Virendra V Shete, and Shruti R Danve. Precision agriculture
robot for seeding function. In 2016 International Conference on Inventive
Computation Technologies (ICICT), volume 2, pages 1–3. IEEE, 2016.

[50] Neobotix. Mobile robot mpo-500. https://www.neobotix-robots.com/

products/mobile-robots/mobile-robot-mpo-500.

[51] Netrise. Meteomotion automatic tomatoes picking. https://metomotion.com/.

[52] Tien Thanh Nguyen, Erdal Kayacan, Josse De Baedemaeker, and Wouter
Saeys. Task and motion planning for apple harvesting robot. IFAC Proceedings
Volumes, 46(18):247–252, 2013.

[53] Tien Thanh Nguyen, Koenraad Vandevoorde, Erdal Kayacan, Josse De Baerde-
maeker, and Wouter Saeys. Apple detection algorithm for robotic harvesting
using a rgb-d camera. In International Conference of Agricultural Engineering,
Zurich, Switzerland, 2014.

[54] Octinion. Rubion strawberries picking robot. http://octinion.com/

products/agricultural-robotics/rubion.

[55] Søren Marcus Pedersen, Spyros Fountas, Claus G Sørensen, Frits K Van Evert,
and B Simon Blackmore. Robotic seeding: economic perspectives. In Precision
Agriculture: Technology and Economic Perspectives, pages 167–179. Springer,
2017.

https://it.mathworks.com/help/images/color-based-segmentation-using-k-means-clustering.html
https://it.mathworks.com/help/images/color-based-segmentation-using-k-means-clustering.html
https://it.mathworks.com/help/images/identifying-round-objects.html
https://it.mathworks.com/help/images/identifying-round-objects.html
https://www.neobotix-robots.com/products/mobile-robots/mobile-robot-mpo-500
https://www.neobotix-robots.com/products/mobile-robots/mobile-robot-mpo-500
https://metomotion.com/
http://octinion.com/products/agricultural-robotics/rubion
http://octinion.com/products/agricultural-robotics/rubion

106 Bibliography

[56] Luis Pérez, Íñigo Rodríguez, Nuria Rodríguez, Rubén Usamentiaga, and Daniel F
García. Robot guidance using machine vision techniques in industrial environ-
ments: A comparative review. Sensors, 16(3):335, 2016.

[57] Rodrigo Méndez Perez, Fernando Auat Cheein, and Joan R Rosell-Polo. Flexible
system of multiple rgb-d sensors for measuring and classifying fruits in agri-food
industry. Computers and Electronics in Agriculture, 139:231–242, 2017.

[58] Alessio Plebe and Giorgio Grasso. Localization of spherical fruits for robotic
harvesting. Machine Vision and Applications, 13(2):70–79, 2001.

[59] ResearchGate. Researchgate for discovering researches. https://www.

researchgate.net/.

[60] King Kong Robot. 4wd mecanum wheel mobile robotic platform. https://www.

robotshop.com/eu/en/4wd-mecanum-wheel-mobile-robotic-platform.

html.

[61] Omni Robot. Mecanum wheel example. https://omni-robots.com/products/

304-8mm-12-inches-mecanum-wheel/.

[62] Juan Jesús Roldán, Jaime del Cerro, David Garzón-Ramos, Pablo Garcia-Aunon,
Mario Garzón, Jorge de León, and Antonio Barrientos. Robots in agriculture:
State of art and practical experiences. Service Robots, 2018.

[63] Abdul Salam and Usman Raza. Autonomous irrigation management in decision
agriculture. In Signals in the Soil, pages 379–398. Springer, 2020.

[64] Alistair J Scarfe, Rory C Flemmer, HH Bakker, and Claire L Flemmer. Devel-
opment of an autonomous kiwifruit picking robot. In 2009 4th International
Conference on Autonomous Robots and Agents, pages 380–384. IEEE, 2009.

[65] Kareemulla Shaik, Edwin Prajwal, B Sujeshkumar, Mahesh Bonu, and Balapa-
nuri Vamseedhar Reddy. Gps based autonomous agricultural robot. In 2018
International Conference on Design Innovations for 3Cs Compute Communicate
Control (ICDI3C), pages 100–105. IEEE, 2018.

[66] P Shanmugavadivu and Ashish Kumar. Boundary detection of objects in digital
images using bit-planes and threshold modified canny method. In Mining
Intelligence and Knowledge Exploration, pages 192–200. Springer, 2013.

[67] BS Shivaprasad, MN Ravishankara, and BN Shoba. Design and implementation
of seeding and fertilizing agriculture robot. International Journal of Application
or Innovation in Engineering & Management (IJAIEM), 3(6):251–255, 2014.

https://www.researchgate.net/
https://www.researchgate.net/
https://www.robotshop.com/eu/en/4wd-mecanum-wheel-mobile-robotic-platform.html
https://www.robotshop.com/eu/en/4wd-mecanum-wheel-mobile-robotic-platform.html
https://www.robotshop.com/eu/en/4wd-mecanum-wheel-mobile-robotic-platform.html
https://omni-robots.com/products/304-8mm-12-inches-mecanum-wheel/
https://omni-robots.com/products/304-8mm-12-inches-mecanum-wheel/

Bibliography 107

[68] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics:
modelling, planning and control. Springer Science & Business Media, 2010.

[69] K Durga Sowjanya, R Sindhu, M Parijatham, K Srikanth, and P Bhargav.
Multipurpose autonomous agricultural robot. In 2017 International conference
of Electronics, Communication and Aerospace Technology (ICECA), volume 2,
pages 696–699. IEEE, 2017.

[70] Richard Szeliski. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010.

[71] Hamid Taheri, Bing Qiao, and Nurallah Ghaeminezhad. Kinematic model
of a four mecanum wheeled mobile robot. International journal of computer
applications, 113(3):6–9, 2015.

[72] Yun-Chao Tang, Chenglin Wang, Lufeng Luo, Xiangjun Zou, et al. Recogni-
tion and localization methods for vision-based fruit picking robots: a review.
Frontiers in Plant Science, 11:510, 2020.

[73] Yingzhong Tian, Shiyu Zhang, Jiaorong Liu, Feixue Chen, Long Li, and Beixin
Xia. Research on a new omnidirectional mobile platform with heavy loading and
flexible motion. Advances in Mechanical Engineering, 9(9):1687814017726683,
2017.

[74] Wageningen University and Greenhouse Horticulture Research. Sweeper robot.
http://www.sweeper-robot.eu7.

[75] Keyvan Asefpour Vakilian and Jafar Massah. A farmer-assistant robot for
nitrogen fertilizing management of greenhouse crops. Computers and electronics
in agriculture, 139:153–163, 2017.

[76] Eldert J Van Henten, Jochen Hemming, BAJ Van Tuijl, JG Kornet, J Meuleman,
J Bontsema, and EA Van Os. An autonomous robot for harvesting cucumbers
in greenhouses. Autonomous robots, 13(3):241–258, 2002.

[77] Manuel Vázquez-Arellano, Hans W Griepentrog, David Reiser, and Dimitris S
Paraforos. 3-d imaging systems for agricultural applications—a review. Sensors,
16(5):618, 2016.

[78] Guohua Wang, Yabo Yu, and Qingchun Feng. Design of end-effector for tomato
robotic harvesting. IFAC-PapersOnLine, 49(16):190–193, 2016.

[79] Kangkan Wang, Guofeng Zhang, and Hujun Bao. Robust 3d reconstruction with
an rgb-d camera. IEEE Transactions on Image Processing, 23(11):4893–4906,
2014.

http://www.sweeper-robot.eu7

108 Bibliography

[80] Xiaoqin Wang, Y Ahmet Şekercioğlu, and Tom Drummond. A real-time
distributed relative pose estimation algorithm for rgb-d camera equipped visual
sensor networks. In 2013 Seventh International Conference on Distributed Smart
Cameras (ICDSC), pages 1–7. IEEE, 2013.

[81] Wikipedia. Cie xyz trimulus values. https://en.wikipedia.org/wiki/CIE_

1931_color_space.

[82] Wikipedia. Mecanum wheel. https://en.wikipedia.org/wiki/Mecanum_

wheel.

[83] Wikipedia. Spherical coordinates of a vector. https://en.wikipedia.org/

wiki/Spherical_coordinate_system.

[84] Inc. © 1994-2020 The MathWorks. Matlab & simulink. https://www.

mathworks.com/products/matlab.html.

[85] Inc © 2020 Autodesk. Thinkercad - online cad. https://www.tinkercad.com/.

[86] ©Microsoft. Microsoft kinect development tools. https://developer.

microsoft.com/en-us/windows/kinect/.

https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/Mecanum_wheel
https://en.wikipedia.org/wiki/Mecanum_wheel
https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.tinkercad.com/
https://developer.microsoft.com/en-us/windows/kinect/
https://developer.microsoft.com/en-us/windows/kinect/

	Sommario
	Introduction
	Work presentation

	Algorithm hierarchy and task specification
	Process procedure
	process specifications
	Environment description

	Robot mobile platform
	Carrier choice
	Car-like robot, Mecanum wheels robot or differential drive

	Localization system
	Motion planning
	Path Planning: Generalized Voronoi diagram method
	Trajectory generation: assign a time law at the path
	Trajectory tracking: backstepping approach

	Approaching movement

	Manipulator arm
	Manipulator arm structure
	Forward kinematics
	Inverse kinematics
	Differential kinematics

	End-effector
	Vision system
	Camera specifications
	Flower identification
	Flower ripeness
	3D localization

	Motion planning and control
	Trajectory planning
	Kinematic control

	Real prototypes
	Existing robots for picking tasks
	Prototype
	Mobile Platform
	Robotic arm
	Vision camera
	Others

	Simulation
	Matlab
	Vrep
	Simulation Environment
	Robot assembling
	functionalities

	Simulation results

	Conclusions
	future improvements

	Euler Angles
	ZYZ angles

	K-mean algorithm
	K-mean image segmentation algorithm

	Flower separation algorithm
	Bibliography

